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Abstract

Aging is characterized by a decline in tissue function, but the underlying changes at cellular
resolution across the organism remain unclear. Here, we present the Aging Fly Cell Atlas (AFCA),
a single-nucleus transcriptomic map of the whole aging Drosophila. We characterize 162 distinct
cell types and perform an in-depth analysis of changes in tissue cell composition, gene
expression, and cell identities. We further develop aging clock models to predict the fly age and
show that ribosomal gene expression is a conserved predictive factor for age. Combining all aging
features, we find unique cell type-specific aging patterns. This atlas provides a valuable resource
for studying fundamental principles of aging in complex organisms.

Short title: Aging Fly Cell Atlas
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Introduction

Aging is characterized by the progressive decline of tissues across the entire body. It is a major
risk factor for a wide range of diseases, including cardiovascular diseases, cancers, and
neurodegenerative diseases (Lopez-Otin et al., 2013; Niccoli and Partridge, 2012). Aging
phenotypes have been observed and described for centuries and a number of different aging
hypotheses have been proposed (e.g., Harman, 2003). However, critical questions remain largely
unaddressed in complex organisms: How does aging impact cell composition and the
maintenance of specific cell types? Do different cell types age at the same rate? Can we use one
cell type’s transcriptome to predict age? What genes and signaling pathways drive aging in
different cell types?

The fruit fly Drosophila melanogaster has been at the basis of many key discoveries in genetics,
neurobiology, development, and aging. About 75% of human disease-associated genes have
functional homologs in the fly (Baldridge et al., 2021; Bellen et al., 2010). Many of the age-related
functional changes in humans are also observed in flies, including a decline in motor activity,
learning and memory, cardiac function, and fertility (Grotewiel et al., 2005). Hence, a proper
description of the molecular and genetic basis of the age-related decline in flies should provide
an important resource for aging studies not only in flies but also in other organisms.

The recent development of single-cell RNA sequencing (scRNA-seq) technologies and the
establishment of the Fly Cell Atlas (FCA) (Li et al., 2022), a single-cell transcriptomic atlas of
Drosophila (5-day-old; 5d hereafter), have made it possible to investigate aging phenotypes
across the whole organism at single-cell resolution. Here, we present the Aging Fly Cell Atlas
(AFCA), a single-cell transcriptomic map describing changes that occur in most tissues over the
lifetime of the fly, including male and female transcriptomic data to identify sex differences. We
performed an in-depth analysis of age-related gene expression and cell composition changes
across the entire fly, as well as cell type-specific and common pathways that correlate with aging.
Interestingly, we observed a significant increase of fat body nuclei with age and our in vivo data
validated the observation. We also observed an increase of apoptotic markers in old indirect flight
muscles, which may underlie the age-related decrease of muscle nuclei. Furthermore, we
developed aging clock models that predict the animal’'s age from the single-cell transcriptomic
data. In addition, we found aging variances in expressed gene number, as well as cell-type
identity. Our analysis revealed that different cell types are uniquely impacted by different aging
features. This aging atlas provides a valuable resource for the Drosophila and aging community
as a reference to study aging and age-related diseases. To make the data easy to access and
use, we developed a website portal for data visualization and custom analyses, and made data
available at the CELLXGENE portal (fig. S1 and S2). All resources can be accessed at
www.flyagingatlas.org.

Results

Single-Nucleus Transcriptomes of the Entire Fly from Different Ages

To generate the Aging Fly Cell Atlas (AFCA), we applied the same single-nucleus RNA
sequencing (snRNA-seq) pipeline that was used for the Fly Cell Atlas (FCA, 5d adults) (Li et al.,
2022) and profiled the whole head and body from three additional ages (30d, 50d and 70d). These
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time points were chosen to cover the trajectory of a fly’s life based on the lifespan curve generated
from the same cohort of flies (Fig. 1A), including 70d old flies, the estimated equivalent of 80-90
year old humans. Male and female flies were sequenced separately, allowing the investigation of
sexual dimorphism during aging (Fig. 1B; see below). To achieve the most reliable analyses of
aging features, we performed preprocessing of the new aging snRNA-seq data similar to the
young FCA data, including index-hopping removal, normalization, doublet removal, and batch-
effect correction (fig. S1A). Consistent with the previous scRNA-seq study of the aging fly brain
(Davie et al., 2018), we found that young and old cells have similar distribution, suggesting the
whole organisms largely maintains their cell-type identities during aging (Fig. 1C). Overall, by
combining the FCA with the new aging data, we obtained more than 868,000 cells covering all 17
broad cell classes (Fig. 1, D and E). The detected numbers of expressed genes and UMIs were
largely consistent across different ages (fig. $3). The most abundant cell classes were neurons,
epithelial cells, muscle, fat cells, and cells from the female reproductive system. To explore
comprehensive aging features across the whole fly, we next annotated those broad cell classes
into detailed cell types.
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Figure 1. Overview of aging fly cell atlas (AFCA).

A) Flowchart of snRNA-seq experiment. Wild-type male and female flies are collected at 30, 50,
and 70 days after eclosion, and head and body are separated. 5d samples are from the previous
FCA data. Fly nuclei are extracted and collected using FACS for 10x Genomics based snRNA-
seq.

B) Number of nuclei collected from different ages. Bars for the number of male and female cells
are shown in different colors.

C) tSNE visualizations of the head and body samples from different ages. Datasets from different
ages are shown in different colors.

D) tSNE visualizations showing broad cell classes of datasets integrated across different time
points. Different colors denote broad cell classes.

E) Cell number of each broad cell class shown in Fig 1D. Different colors denote broad cell
classes.

AFCA Cell Type Annotation and Resource for Studying Cell Type-Specific Aging

Since cell type-specific aging analysis largely depends on the accurate annotation of cell types,
we took several complementary approaches to ensure that our new AFCA data are annotated
with high confidence. In particular, we first co-clustered our aging data with the annotated FCA
data, from either the head/body or individual tissues. Then we transferred AFCA annotations
using two independent methods: a cluster-centered method and a supervised machine-learning
based method (fig. S4 and S5, Methods). Overall, we found that these two approaches agree
well with an 80% overlap of annotations between these two independent methods across the
organism (Fig. 2A). The discrepancies of the non-overlapping annotations were mostly due to
uncharacterized cell types in the FCA data or cell types with aging differences. Next, we manually
validated each cell type annotation using cell type-specific markers. Marker validation confirmed
the accuracy of our automatic annotation procedure, with a few exceptions such as indirect flight
muscles due to age-related loss of specific markers (fig. S6A-B) and gut cell types due to the
high similarity between intestinal stem cells and renal stem cells (fig. S6C). These cell types were
then manually added and corrected (fig. 85 and S7). Overall, we characterized 162 distinct cell
types, including 90 cell types from the aging head and 72 cell types from the aging body (Fig. 2B,
fig. S8 and S9). Note that we could not reveal all 251 cell types annotated in the previous FCA
study, because many FCA annotations are from dissected tissues with deep sequencing (e.g., 37
cell types from the testis with more than 43,000 nuclei sequenced and 18 types of olfactory
receptor neurons from the antenna with more than 37,000 nuclei sequenced).

For complex tissues, like the brain, more cell types are resolved when significantly more cells are
sequenced (Janssens et al., 2022; La Manno et al., 2021; Zeng, 2022). Indeed, 17 new neuronal
cell types emerged after combining young and old head data with distinct cell markers (Fig. 2C).
Among them, 4 are GABAergic neurons (Gad1+), 2 are Glutamatergic neurons (VGlut+), and the
remaining 11 types are cholinergic neurons (VAChT+) (fig. S10).
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Next, we assessed if the AFCA provides a reliable resource to investigate age-related changes
in certain tissues or cell types. We focused on the fly gut as a case study, where the somatic stem
cell lineage and its aging have been well characterized in the past decade (Li and Jasper, 2016).
In a healthy young fly gut, intestinal stem cells (ISCs) maintain gut homeostasis through proper
proliferation and differentiation. In old guts, ISCs exhibit a high proliferation rate, and their
daughter cells, enteroblasts (EBs), do not properly differentiate into mature enterocytes, leading
to a dysplasia phenotype (Jasper, 2020; Micchelli and Perrimon, 2006; Ohlstein and Spradling,
2006). We first extracted six major gut cell types from the body data — ISCs, EBs, differentiating
enterocytes, anterior enterocytes, posterior enterocytes, and enteroendocrine cells, and
performed pseudotime trajectory analysis (Jacomy et al., 2014; Wolf et al., 2019). Interestingly,
there is a significant increase of ISCs and EBs along with a decrease of fully differentiated
enterocytes, consistent with previous in vivo studies (Fig. 2D, fig. $S11) (Rodriguez-Fernandez et
al., 2020). This trajectory analysis also allowed us to identify genes that showed different dynamic
patterns along the ISC lineage between young and old flies (fig. S11E). In summary, the detailed
annotations in our AFCA data offer a valuable resource to explore cell type- and tissue-specific
aging signatures.

All the AFCA annotations and data can be accessed through our web portal
www.flyagingatlas.org. We also provide a customized platform which allows users to flexibly
survey different features, including cell-type, age, and sex variations (see fig. S2).

Cell Composition Changes During Aging

In complex organisms, aging can affect cellular composition in different ways, such as changing
stem cell proliferation or differentiation processes, altering cell identity, or inducing cell death. We
assessed whether and how aging impacts cellular composition across the whole fly. Note that our
data are profiles of single nuclei, so our measurements are based on nuclei composition. Since
the nuclei are extracted from the whole head and body with minimal sampling bias, the ratio for
each cell type in our sequencing data should largely reflect their composition in vivo.

To perform reliable analyses, we focused on cell types that have more than 500 nuclei in total
(112 cell types after filtering). We then calculated the composition changes by comparing three
older ages (30d, 50d, 70d) to young flies (5d). The top 5 increased cell types are cardia cells
(proventriculus from the gut), fat body cells, male accessory gland main cells, EBs, and adult
salivary gland cells (Fig. 2E). Comparing two consecutive ages showed similar results (fig. $12).
Age-related increases of proventriculus cells, male accessory gland main cells, and EBs from the
gut have been reported previously (Biteau et al., 2008; Regan et al., 2016; Rezaei et al., 2015),
confirming the quality of our data and analysis. Fat body cells are one of the most abundant cell
types in Drosophila. They are polyploid, filled with lipid droplets, and tightly attached to the
abdominal cuticle. These features make it difficult to isolate them or to compare their compositions
using traditional imaging or cell-isolation and counting methods. To our knowledge, an increase
of fat body nuclei in old flies has not been reported. We were able to validate this observation by
dissecting young and old fly abdomen filet and manually counting fat body nuclei (Fig. 2F).
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Fat body cells are postmitotic cells, and no adult stem cells or progenitor cells have been reported
to regenerate adult fat body cells (Arrese and Soulages, 2010). To examine why fat body nuclei
were increased in old flies, we first checked the number of nuclei within single cells using a fat
body-specific GAL4 driving cell membrane GFP (cg-GAL4 > UAS-CD8GFP). Interestingly, many
aged fat body cells exhibited an increase in cell size and contained multiple nuclei per cell (Fig.
2G). The multinucleated phenotype can potentially be caused by cell membrane fusion as
reported in other cell types (Losick et al., 2013), but cell fusion cannot explain the increase in the
number of nuclei observed by snRNA-seq and in labeled tissue (Fig. 2, E and F). It has been
reported that polyploid enterocytes from the fly gut can undergo nuclear cleavage without mitosis
after starvation-induced stem cell loss (a process termed amitosis) (Lucchetta and Ohlstein,
2017). To test this possibility, we performed immunohistochemistry to detect the nuclear lamina
protein, Lamin C (LamC), and a mitosis marker, Phospho-Histone H3 (pH3), in fat body cells. We
did not detect any mitotic events from more than 60 flies across different ages, but we did observe
many cases where two nuclei were localized very close to each other and they were negative for
the mitotic marker (Fig. 2H). 3D reconstruction of confocal images confirmed that these nuclei
were present in the same cell without a separating cell membrane (Movies S1-S3). Such events
were captured across different ages (fig. $13). Together, these data suggest that fat body cells
undergo nuclear division without cytokinesis across different ages, leading to multinucleated cells
and an increase in the number of nuclei in older flies. The formation of multinucleated cells has
been documented in human hepatocytes (Chen et al., 2012; Kudryavtsev et al., 1993) and it will
be of interest to further investigate molecular mechanisms and physiological functions (see
Discussion).

Among the top 5 decreased cell types are three types of muscles — indirect flight muscle, visceral
muscle, and other muscle cells (mostly skeletal muscle) (Fig. 2E). Loss of muscle mass and
strength or sarcopenia is a conserved aging phenotype across different mammals, including
humans (Doherty, 2003). Due to the unique fiber structure and multinucleation of muscle cells, it
is difficult to count total muscle nuclei from the whole animal. Our in vivo staining data confirmed
the age-related degeneration of indirect flight muscles as well as a significant increase of an
apoptosis marker Caspase3 in old flies (Fig. 21 and fig. S14), consistent with a previous study
(Jeon et al., 2015). Germ line cells also showed a significant decrease (Fig. 2E, fig. $12),
presumably contributing to the decline of fecundity in old flies. The majority cell types from the
head, mostly neurons, showed no or minimal cellular composition changes (Fig. 2E; fig. $12).
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Figure 2. AFCA resource and changes of cell composition during aging.

A) Flowchart of transferring annotations from FCA to AFCA. See fig. S4-S7 and Methods for
details.

B) Cell types annotated in the AFCA head and body shown by tSNE. Number of annotated cell
types corresponding to the broad cell classes are shown in the table. See fig. S8 and S9 for
detailed annotations.

C) Identification of 17 new neuronal clusters after combining AFCA and FCA head data. See fig.
S10 for top marker genes.

D) Pseudotime and cellular composition of ISC and ISC-differentiated cell types. The ratio of ISCs
and EBs increases with age, while the ratio of ECs decreases. ISC, intestinal stem cell; EB,
enteroblast; EC, enterocyte; EE, enteroendocrine cell; a. EC, anterior EC; p. EC, posterior EC;
diff. EC, differentiating EC.

E) Changes of cellular composition during aging. Each dot represents one cell type. Each color
means the comparison between one aged sample and the young sample (5d). Dot sizes reflect
the cell numbers of the corresponding cell type from the aged population. Tissue origins are
indicated.

F) Comparison of the number of nuclei of fat body from young and old flies. Nuclei are stained by
DAPI and counted in each fly. The nucleus numbers are significantly increased in the 50d
population (t-test, 50d vs. 5d, P value=0.0023). Error bar, standard deviation (SD).

G) Representative confocal images showing nuclei in young and old fat body cells. The fat body
cell membrane is labeled by cg-GAL4 > UAS-CD8GFP. Nuclei are stained by DAPI and the LamC
antibody.

H) Fat body cell with segregating nuclei stained by pH3, DAPI, LamC, and GFP. pH3 signal is not
detected in the segregating nuclei.

1) Indirect flight muscle stained with cleaved-Caspase3 antibody, DAPI, and Phalloidin. Cleaved-
Caspased signals are significantly increased in the aged population (t-test, 50d vs. 5d, P
value<0.0001). Median numbers indicated.

Differentially Expressed Genes (DEGSs)

Altered gene expression is another consequence of aging. To assess such changes, we
performed the differentially expressed gene (DEG) analysis between young and old flies
(Methods) and ranked cell types by the number of DEGs between young and old flies (Fig. 3A;
fig. S15A). Again, we focused on 112 cell types with more than 500 cells for a reliable analysis.
In the body, the cell type with the highest number of DEGs was the fat body, while in the head,
the most affected cell type was the outer photoreceptor, including R1 to R6 (Fig. 3A).

To explore the dynamics of cell type-specific changes, we further examined the time window
during which cell types change the most by computing DEG numbers between two neighboring
ages (5d/30d, 30d/50d, and 50d/70d; fig. $15B) and normalizing their ratios (Fig 3B; fig S16).
This analysis revealed several interesting insights (Fig 3, B and C). Specifically, about 80% of
the cell types showed major changes (> 50% of DEGs) during the first time window, suggesting
that 30d old flies have captured a large portion of age-related gene changes for these cell types,

10
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as for example observed in visceral muscle of the crop. Some cell types, like the male accessory
gland, showed minimal changes in the last time window, indicating these cell types reach their
maximum transcriptomic changes around 50d. However, 5.3% of types showed dramatic changes
(> 50% of DEGs) in the last time window, such as intestinal stem cells and cardia cells, suggesting
they age at a slower rate during the first 50d. Other cell types showed a steady rate of change in
DEG, such as outer photoreceptors and fat body cells. Hence, this analysis indicates that different
cell types age in different ways.

By integrating cellular composition changes and DEG analysis, we further determined which cell
types were affected by those two parameters (Fig 3D). Significantly affected cell types (‘outliers’)
fell into four categories: 1) cells showing changes for both, such as fat body cells from the body,
pericerebral adult fat mass (fat cells from the head), and male accessory gland main cells; 2) cells
showing a high number of DEGs but minimal composition changes, such as eye outer
photoreceptors and cone cells, consistent with a previous study reporting that the age-related fly
visual decline is not due to the loss of photoreceptors (Hall et al., 2017); 3) cells showing
decreased nucleus number and a moderated number of DEGs, such as indirect flight muscles; 4)
cells showing increased nucleus number but minimal DEGs, such as cardia.

Since we sequenced male and female flies separately, the dataset allowed us to explore how
aging affects the sexual dimorphism across cell types. We first observed that female marker yolk
protein genes (Yp71, Yp2, and Yp3) showed significant decrease during aging in most female cell
types, while the male markers (roX71 and roX2) maintained high expression levels in most male
cells (fig. $17), suggesting aging indeed impacts male and female cells differently. It has been
shown that different cell types exhibit a varied number of DEGs between males and females at a
young age (Li et al.,, 2022). How do these numbers change during aging? To address this
question, we calculated the number of DEGs between males and females and examined their
dynamics along aging. Typically, if one cell type showed a high (e.g., fat body cells) or low (e.g.,
Johnston organ neurons) number of DEGs at 5d, it maintained the high or low number during
aging (fig. S18A). However, some cell types showed age-specific sex differences. For example,
three cell types from the head, pericerebral adult fat mass, skeletal muscle, and hemocyte, all
showed low DEGs at the young age, but high DEGs in old flies (fig. S18). In contrast, three glial
populations showed a significant decrease of DEGs with age (fig. S18C).

Analysis of Gene Pathways

Next, we asked which genes and pathways are enriched in those DEGs. Gene ontology (GO)
analysis was performed for both up- and down-regulated genes (fig. $19). Most GO terms were
cell type-specific (fig. S19A): only about 20% GO terms were shared by >5 cell types out of 112
cell types for down-regulated genes and 40% for up-regulated genes. Interestingly, we found that
one GO term from down-regulated genes, called ‘cytoplasmic translation’, was shared by almost
all cell types. Cytoplasmic translation refers to the ribosome-mediated process for protein
synthesis. Indeed many transcripts of genes encoding ribosomal proteins were decreased across
cell types, consistent with previous studies showing age-related reduction of protein synthesis in
different tissues (see below) (Gonskikh and Polacek, 2017). There were no globally shared GOs
among the up-regulated genes. Instead, they were restricted to specific groups of cells, like signal
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transduction seen in neuronal cell types and protein phosphorylation enriched in different non-
neuronal cells (fig. $19).

In addition to the shared GOs, we focused on GOs enriched within a few cell types to understand
the cell type-specific regulations (Fig. 3E and 3F). For example, fat body cells from body and
head (pericerebral adult fat mass) shared metabolic-related GO terms from up-regulated genes,
such as lipid homeostasis and triglyceride homeostasis (Fig. 3E), suggesting a coordinated
increase of these two tissues for metabolic regulation. For indirect flight muscles, a reduction of
locomotor behavior was observed and is likely to be caused by the dysregulation of muscle
structure and the reduction of their nucleus number (Fig. 3E; also see Fig. 2E). Also, sex
reproduction-related genes were strongly decreased in male accessory gland main cells,
suggesting a decline in reproductive ability in males (Ruhmann et al., 2018). In summary, we
observed that genes involved in “cytoplasmic translation” are commonly decreased during aging
in many cell types and most other GO terms showed cell type-specific patterns corresponding to
the functions of these cell types.
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Figure 3. Differentially expressed genes (DEGs)

A) Number of DEGs from different cell types. Each aged group is compared with the young
population (5d). Each line shows the number of DEGs from the indicated age comparison. Cell
types are ranked by DEG numbers from high to low (50d vs 5d). Top 10 cell types are indicated.
B) Ratio of DEGs from each age comparison. Dynamic age comparisons, including 30d vs. 5d,
50d vs. 30d, and 70d vs. 50d, identify different numbers of DEGs from each age period (Methods).
Arrows point out representative cell types that would be further compared in Fig. 3C.

C) Cumulative ratios of DEGs from cell types indicated in Fig. 3B.

D) Combination of DEG number and change of nucleus number illustrate different aging patterns.
E-F) Top 5 cell type-specific GOs from selected cell types. E) GOs enriched in the selected cell
types based on up-regulated DEGs. F) GOs enriched in the selected cell types based on down-
regulated DEGs.

Aging Clock to Predict the Biological Age

To predict the biological age of an animal or human, a number of different aging clock models
have been recently developed using epigenetic markers and transcriptomic data (Horvath and
Raj, 2018; Buckley et al., 2022; Davie et al., 2018). Here, we investigated whether our snRNA-
seq data can be used to develop an aging clock, a cell type-specific age predictor. To perform a
more accurate prediction, we focused on cell types that have more than 200 cells at each age
point, with a total 64 cell types after filtering. For each cell type, we trained an Elastic Net
regression model (Zou and Hastie 2005) to predict age by using its transcriptome as features
(Methods). We measured predictive performance using the coefficient of determination or R?
which represents the proportion of the variation in the age variable that was predictable from the
transcriptome (Fig 4A). The average performance across all cell types was high (average R>=0.79
for body and 0.84 for head). Next, we asked what types of cells and what genes can be best used
to predict the fly’s age.

Outer photoreceptor cells and oenocytes showed the highest predictive scores in head and body,
respectively (Fig. 4. B, C, fig. $20). Drosophila oenocytes are large secretory cells present in the
abdomen which perform liver-like functions including lipid storage and metabolomics functions,
similar to fat body cells (Ghosh et al., 2020). We confirmed that high scores were not caused by
higher cell numbers (fig. S21A). We further asked whether there is a difference in predictive
performance between different time points. To explore this, we trained a logistic regression
classifier to distinguish between transcriptomes of consecutive time points. We found that the
classifier achieved near-perfect performance in distinguishing between 5d and 30d old flies in
both head and body, indicating that the largest transcriptomic differences are present between
the first two ages (Fig. 4D).

Next, we focused on identifying aging clock genes that are used to predict the animal’'s age
(Methods). First, we found that most aging clock genes are used in a cell type-specific manner —
for example, among the top 480 genes, only 8 genes are shared for more than 20 cell types (Fig.
4E). Interestingly, 70 out of 94 fly ribosomal protein genes were identified as aging clocking genes,
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showing age-related reduction in different cell types (Fig. 4, E to G). This data is consistent with
our previous GO analysis where ‘cytoplasmic translation’ is reduced in almost all cell types.
Decreased protein turnover, which can be caused by the reduction of ribosomal proteins, is a
prevalent feature of aging (Basisty et al., 2018). Many studies have demonstrated that the overall
level of protein synthesis is reduced with age across many species, including flies, mice, rats, and
humans (Anisimova et al., 2018). Our data suggest that reduction of ribosomal expression
contributes to the age-related decrease of protein synthesis and turnover. To further investigate
the relationship of aging clock genes across species, we identified aging clock genes for Mouse
Aging Cell Atlas (Tabula Muris Senis) (Tabula Muris Consortium, 2020). Interestingly, we
observed that a large portion of overlapping aging clock genes from the fly and mouse encode
ribosomal proteins (Fig. 4H; fig S22, S23).
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Figure 4. Aging clock analysis.

A) Example of aging clocks for outer photoreceptor cells (top) and adult oenocytes (bottom).
Aging clocks are cell type-specific regression models that predict age from transcriptome data.
Red line is the fitted regression line. Blue dots represent individual predictions where each dot
corresponds to one cell. We measure performance as the proportion of the variance for an age
variable that's explained by transcriptome (R?).

B, C) Predictive performance of cell type-specific aging clocks for B) head cell types and C) body
cell types. Performance is measured as the mean R 15 cell types with the highest scores are
shown. Error bars are estimated as a standard deviation over 5 runs.

D) Accuracy of logistic regression models trained to distinguish transcriptome between two
consecutive time points. Boxplots show distribution across head cell types (left) and body cell
types (right).

E) Number of aging clock genes as a function of the number of cell types (left). 80% of genes
appear in less than 5 cell types. Out of 480 genes identified as aging clock genes, 70 encode
ribosomal proteins (right).

F-G) Examples of aging clock genes for outer photoreceptor cell F) and adult oenocyte G). Cell
type-specific genes that appear in less than 5 cell types are shown in black color, while genes
that appear in at least 5 cell types are marked in red color.

H) Venn diagram comparing aging clock genes in fly and mouse. Aging clock genes in mice are
derived from Tabula Muris Senis dataset. 33 genes are 1-1 orthologs between the two species,
and 29 of these genes encode ribosomal proteins. See fig. S22 for gene names.

Comprehensive Aging Features

Through the above analyses, we noticed that different cell types are sensitive to different aging
measurements. For example, the outer photoreceptors showed a high number of DEGs, but a
minimal change of cell number; germline cells showed decreased cell numbers, but a very low
number of DEGs. To gain a better understanding of cell type-specific aging, we investigated more
aging features, including expressed gene number or transcript number (measured by UMI)
changes, and decline of cell identity (Fig. 5A).

Similar to the aging clock analysis, we only focused on cell types with at least 200 cells from each
age for a reliable analysis. Gene and UMI numbers were previously found to decrease in the fly
aging brain (Davie et al., 2018). Indeed, we observed that the CNS neurons decrease the gene
or UMI numbers during aging (fig. S24A). To understand whether such a reduction is a general
aging feature across different cell types, gene and UMI numbers from all cell types were compared
between different ages (Fig. 5B, fig. $S24B). The overall trend of gene and UMI numbers was
largely consistent. Focusing on expressed gene numbers, we found that around 80% of cell types
decreased expressed gene numbers per cell, but 20% increased the expressed gene number per
cell, suggesting that aging affects expressed gene numbers in a cell type-specific manner. Head
hemocytes and pericerebral adult fat mass increased most in expressed gene numbers, while
oenocytes, ventral nervous system, and fat body decreased most (Fig. 5B, fig S24C). The
variation of expressed gene number per cell was less likely caused by the differences in
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sequencing depth since the sequencing saturation is over 90% for most of our samples (fig.
S$24D). Even though head and body fat body cells both increased the nucleus number (Fig. 3D),
their expressed gene numbers were changed in the opposite trends during aging, supporting the
idea that different aging features are differentially regulated.

Loss of cell-type identity has been shown to occur during aging for certain cell types (Izgi et al.,
2022; Li et al., 2016). However, how cell identity is changed across the entire organism during
aging remains uncharacterized. To characterize the cell identity changes, we developed a
measurement to combine two ratios — loss of original markers and gain of new markers — by
comparing old to young populations (Fig. 5C, left panel) (Methods). We measured these two
factors and ranked cell types by their cell identity decline score (Fig. 5C, right panel). The gene,
Nig1, which was used as a marker gene to annotate the indirect flight muscle, showed a dramatic
decrease with age, similar to a number of other young marker genes (Fig. 5C, fig. S6A).
Meanwhile, many other genes began to appear in this cell type with aging (fig. S6A). Other than
the indirect flight muscle, pericerebral adult fat mass, epithelial cell from the head, male accessory
gland main cell, and outer photoreceptor cell were also found to largely decrease cell-type identity
(fig. S25-S26).

Correlation and Ranks of Aging Features

Together with the previously analyzed three aging features — cell composition (Fig. 2E), DEG
analysis (Fig. 3), and aging clock scores (Fig. 4) — we examined five different aging features in
total. To understand the overall correlation of different aging features, we ranked each feature
from the least age-related change to the most (Methods). After integrating five aging features,
their correlations were compared using Spearman’s correlation and clustered using the
correlation scores (Fig. 5F). Among the five features, DEG number and cell identity were highly
correlated with each other, suggesting cell types with high number of DEGs would usually
fluctuate in the expression of marker genes. On the other hand, change of cell number, and
expressed gene number were more correlated with each other, while the aging clock score
seemed to be more independent of other features.

To categorize which cell types have more aging features, we summed different feature ranks and
sorted cell types by the total rank sums, higher rank meaning more “aged” (Fig. 5G, fig. $27).
Interestingly, the top four cell types include three adipose cell types, oenocytes, fat body cells,
and pericerebral adult fat mass (fat cells from the head), as well as indirect flight muscle cells,
suggesting that those cells age faster than other cell types. Following them are two reproduction-
related cell types, male accessory gland main cells and follicle cells from the ovary, indicating that
reproductive systems also undergo fast aging. Generally, neurons and glia from the nervous
system age slower compared to other cell types (Fig. 5G). In summary, our analysis provided the
first exhaustive analysis of different aging features and revealed the aging rates of different cell
types across the entire fly.
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Figure 5. Systematic comparisons of different aging features.

A) Flowchart of comparing different aging features.

B) Age variation of detected gene numbers per cell. Expressed gene numbers per cell from each
cell type are compared between old (50d) and young (5d) flies. The red block shows cell types
with increased gene number during aging, while the blue block includes cell types with decreased
one.

C) Two cell types, hemocyte from the head and oenocyte, have the highest increase and decrease
of expressed gene numbers per cell.

D) Decline of cell identity during aging. The left panel illustrates two different mechanisms of
decreasing cell identity. The right panel shows the ratio of marker genes decreasing cell identity.
Each line in the right panel represents one cell type.

E) Spearman’s correlation of different aging features. The correlations of five different aging
features are compared in 64 cell types.

F) Rank sum of different aging features. The heatmap shows the overall rank sum scores from
different cell types. High aging ranks are shown in red, while low aging ranks are shown in blue.
Neuron- or glia-related classification are shown beside the heatmap.

Discussion

In complex organisms, different cell types possess distinct characteristics of their corresponding
functions. For example, somatic stem cells need to proliferate and differentiate to replenish the
tissue, while postmitotic neurons remain alive and functional during the lifespan of the organism.
Hence, aging causes a physical and functional decline of all cell types in very different manners.
Understanding how different cell types are impacted by aging is critical for designing interventions
that delay aging and improve health. Molecular genetic approaches in Drosophila have helped
elucidate fundamental mechanisms and principles in genetics, development, and neurobiology.
The AFCA provides a resource for the aging community to investigate aging and age-related
diseases at a single-cell resolution.

The cell atlas approach is emerging as a powerful tool to systematically study aging in different
organisms, including C. elegans (Roux et al., 2022), mouse (Tabula Muris Consortium, 2020),
and humans (Sziraki et al., 2022). A recent study performed cross-species analysis with single-
cell RNAseq data from three different species, including Drosophila from 11d to 41d (Wang et al.,
2022). However, this study uses a single-cell RNAseq protocol, and thus, many cell types which
cannot be efficiently isolated as intact cells, are not revealed (33 annotated cell types versus 162
in our study) (fig. $28). For example, they annotated 1 glial type (15 types in AFCA), 1 type of
sensory neuron (12 types in AFCA), and 5 types of CNS neurons (72 types in AFCA) (fig. S28A).
As a consequence, easily-isolated cell types are overrepresented (e.g., 38.9% cells from the
dataset are follicle cells from the ovary) (fig. S28B). Also, male and female flies are not separated
in this study. Our study employed an unbiased single-nucleus RNAseq approach, allowing us to
survey cell composition changes more faithfully. We sequenced male and female flies separately,
allowing to study sexual dimorphism along aging (fig. S17 and S18). The AFCA atlas contains
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samples from older populations (50d and 70d) covering the whole lifespan. Overall, our AFCA
provides a complementary but more thorough and complete dataset for studying aging features
across the whole organism.

One interesting observation is the significant increase of fat body nuclei during aging. Drosophila
fat body is a liver-like tissue that stores fat and serves as a detoxifying and immune responsive
organ. Adult fat body cells are postmitotic polyploid cells without a stem cell or progenitor
population (Arrese and Soulages, 2010). How do they increase their nucleus number? Our
observations suggest that these polyploid cells increase their number of nuclei by nuclear
cleavage without cytokinesis, forming multinucleated cells. To complete karyokinesis, the nuclear
envelope needs to be reassembled or reorganized. Interestingly, fat body cells have been shown
to decrease their nuclear envelope integrity due to the loss of Lamin-B during aging (Chen et al.,
2014). It will be of interest to study whether the loss of nuclear envelope integrity is associated
with the multinucleated phenomenon. On the other hand, multinucleated cells have also been
observed in the fly male accessory gland (Bertram et al.,, 1992, Box et al.,, 2022) and
subperineurial glia cells (Unhavaithaya and Orr-Weaver, 2012), suggesting multinucleated cells
play specific roles in Drosophila. Other than Drosophila, multinucleated cells have also been
observed in other species, including mushrooms (Gehrmann et al., 2018), plants (von Aderkas et
al., 2005), and human and mouse liver cells (Chen et al., 2012). Understanding the formation and
regulation of multinucleated cells in the aging organism may provide new insights into an
evolutionarily conserved phenomenon, as well as into the potential roles of multinucleated cells
in age-related diseases.

We focused on five different aging features in this study. Although these features cover several
key aspects of age-related changes, the picture is not complete. Additional aging measurements
may reveal more specific aging patterns. For example, we investigated the change of alternative
polyadenylation (APA) patterns, which can reflect short or long 3' UTR usage for different isoforms
(Lee et al., 2022), and found that neuronal extended 3' isoforms were progressively depleted
during aging. This phenotype is more obvious at 70d and more pronounced in females than in
males (fig. $29). These data imply a global change in post-transcriptional regulation in
aging neurons. Thus, future specific analysis may help elucidate additional aging patterns.

One major goal of this study is to characterize how different cell types age across the organism.
Our analysis using five different aging features provides several interesting insights. First, different
cell types have very distinct aging patterns. For example, the fat body cells showed high ranks for
4 aging features but low for aging clock score, while scolopidia neurons showed low ranks for 4
aging features but high changes in expressed gene number (Fig. 5F). This observation is not
unexpected considering that each cell type carries a unique function. Secondly, we observed a
divergence in the contribution of individual cell types to a tissue’s aging phenotype. For example,
in the female reproductive system, follicle cells were ranked very high (6th of 64 cell types), but
germline cells were ranked near the bottom (53th of 64 cell types) (fig. S27A). This indicates that
age-related decline of female fertility may be due to aging of follicle cells. Thirdly, the top ranked
cell types include all adipose cells. This is surprising and we do not fully understand the underlying
mechanisms. It may be linked to the fact that these cell types play multiple critical roles in different
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physiological conditions, such as lipid storage and metabolism, immune responses, and
interorgan communication with muscles and gut (Arrese and Soulages, 2010; Chatterjee and
Perrimon, 2021; Zhao and Karpac, 2021).
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Data and materials availability:

All data are available for querying at https://flyagingatlas.org. Raw FASTQ files and processed
h5ad files, including expression matrices and cell-type annotations, can be downloaded from
NCBI GEO: GSE218661. Analysis codes for generating the figures can be downloaded from
https://github.com/hongjie-lab/AFCA. FCA data were downloaded from
https://www.flycellatlas.org/.
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Materials and Methods

Fly sample and lifespan

Fly head and body samples were from F1 of two wild type fly stains: female w'’’® and male Oregon
R (OreR). Flies were maintained on standard cornmeal medium at 25 C with 12-hour light—dark
cycle. For the lifespan experiment, progenies were collected 3 days after the first fly hatched.
Flies were allowed to mate for 3 days. Then male and female flies were separated into different
cages (120 flies per cage) for lifespan or sample collection at 25°C. Fly food was changed every
2 days. Dead flies were counted every 2 days. Lifespan curves were generated in Excel.

1118

Single-nucleus RNA sequencing

Fly heads and bodies were dissected at different ages, 30d, 50d and 70d, put into 1.5ml RNAase
free Eppendorf tube, flash-frozen using liquid nitrogen, and then stored at —80°C. We put 100
heads or 50 bodies in each tube. Single-nucleus suspensions were prepared following the
protocol described in Fly Cell Atlas study (Li et al., 2022). Next, we collect nuclei by FACS. We
used the SONY SH800 FACS sorter for collecting nuclei. Nuclei were stained by Hoechst-33342
(1:1000; >5min). Since polyploidy is common for many fly tissues, we observed different
populations of nuclei according to DNA content (Hoechst signal). In order to include all cell
populations with different nuclear sizes, we have included all nuclear populations from the FACS.
Nuclei were collected into a 1.5ml tube with 200ul 1x PBS with 0.5% BSA as the receiving buffer
(RNase inhibitor added). For each 10x Genomics run, 100k—400k nuclei were collected. Nuclei
were spun down for 10 min at 1000g at 4 C, and then resuspended using 40ul or desired amount
of 1x PBS with 0.5% BSA (RNase inhibitor added). 2ul nucleus suspension was used for counting
the nuclei with hemocytometers to calculate the concentration. When loading to the 10x controller,
we always target 10k nuclei for each channel. We observed that loading 1.5 folds more nuclei as
recommended by the protocol allowed us to recover about 10k cells after sequencing. For
example, if the concentration is 1500 nuclei per ul for one sample, we treat it as 1000 nuclei per
ul when loading to the 10x controller.

Next, we performed snRNA-seq using the 10x Genomics system with 3’ v3.1 kits with following
settings. All PCR reactions were performed using the Biorad C1000 Touch Thermal cycler with
96-Deep Well Reaction Module. 13 cycles were used for cONA amplification and 16 cycles were
used for sample index PCR. As per 10x protocol, 1:10 dilutions of amplified cDNA and final
libraries were evaluated on a bioanalyzer. Each library was diluted to 4 nM, and equal volumes
of 18 libraries were pooled for each NovaSeq S4 sequencing run. Pools were sequenced using
100 cycle run kits and the Single Index configuration. Read 1, Index 1 (i7), and Read 2 are 28 bp,
8 bp and 91 bp respectively. A PhiX control library was spiked in at 0.2 to 1% concentration.
Libraries were sequenced on the NovaSeq 6000 Sequencing System (lllumina).

For each age, we sequenced the head for 12 runs (6 for male and 6 for female) and body for 12
runs (6 for male and 6 for female). To collect enough nuclei for 6 runs, we used 100 heads and
50 bodies. For three ages, we sequenced 24*3 = 72 runs. We have recently published a protocol
describing the single-nucleus RNAseq in Drosophila and all above steps have been detailed
(McLaughlin et al., 2022).
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Sequencing read alignment

The raw FASTQ files were first filtered for the index-hopping reads by using the index-hopping-
filter developed by the 10x Genomics (version 1.0.1). Before mapping reads, the Drosophila
melanogaster genome (FlyBase r6.31) was indexed with a pre-mRNA GTF, which was
established by FCA (Li et al., 2022), using the Cell Ranger (version 4.0.0). FASTQ files removing
the index-hopping reads were mapped to the Drosophila melanogaster genome (r6.31) using Cell
Ranger Count (version 4.0.0) to generate the count matrix.

AFCA annotation

In the FCA dataset, there are 251 cell types annotated, many of which were characterized from
dissected tissues. For cell types from the head, besides the whole head sequencing, there are
only two dissected tissues: antennae and proboscis. So, most cell types from the aging head can
be annotated based on the FCA whole head data. For cell types from the body, most cell type
annotations are from tissues (only 33 annotated cell types from the FCA whole body data). To
annotate aging body data, we need to transfer annotations from the body and individual tissues
(e.g., gut, wing, leg, testis, ovary, fat body etc). Thus, the aging head and body data were
annotated using slightly different strategies and we characterized them separately. For both, we
first integrated FCA and AFCA datasets and corrected age and sex differences using Harmony
(Korsunsky et al., 2019). Next, we characterized cell types using two different approaches: co-
clustering and supervised machine learning (ML)-based classification. Then, we validated those
two approaches using cell type-specific markers and performed manual correction when
necessary.

For the head data, FCA and AFCA head cells were co-clustered and 150 principal components
(PCs) were selected for clustering. We followed the co-cluster-based approaches utilized in FCA
brain-head integration (Li et al., 2022) and annotations from the FCA cells were transferred to the
clusters that contained at least 15% of cells with the same annotation. Alternatively, if more than
15% of the annotation-specific cells were enriched in the clusters, those clusters were assigned
to the corresponding annotations. Different Leiden resolutions were applied for the transfer and
the one with the maximum number of transferred annotations was chosen. If annotations from
two approaches were not consistent, cluster-dominant annotations would be assigned to the
clusters. Besides cluster-based transfer, we also included a supervised ML method. We utilized
the Logistic Regression classifier to transfer the FCA annotations to AFCA cells. FCA cells were
used as the training dataset, while AFCA samples were considered as test data. By comparing to
the annotations from these two approaches, annotations were manually confirmed by examining
the expression of cell type-specific genes to prevent the loss of transfer due to aging. Also,
annotations were unified and denoised in the cluster level. In total, 90 cell types were annotated,
including 17 newly identified neuron types.

To annotate AFCA body cells, FCA and AFCA body cells were first co-clustered using 50 PCs
and 33 annotations from FCA body were transferred to the AFCA body cells using approaches
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similar to the head transfer. To include annotations from different body tissues, we co-clustered
cells from FCA body, AFCA body, and all FCA tissues to identify clusters with tissue-specific
annotations (fig. S4). The cluster-based method enabled us to quickly identify tissue-specific
annotations from integrated body and tissue cells. Clusters with tissue-specific annotations were
chosen for further sub-clustering and tissue annotations were transferred similarly using cluster-
and supervised ML-based approaches. Due to the similarity between some gut and malpighian
tubule cell types, especially for the intestinal stem cell and renal stem cell (fig. S6C and S7), we
combined annotations from these two tissues together for the transfer. Some cell types, like
muscle cells, were present in multiple tissues and we considered subsetting those cells based on
the expression of cell-type markers, instead of selecting the annotation-enriched clusters (fig.
S5). After subsetting marker-positive cells, FCA annotations were similarly transferred. After
transferring all tissue annotations, 72 cell types were annotated in the AFCA body.

Gut cell type case study

The analysis of the gut cells in the AFCA data was performed using SCANPY and scFates python
packages (Faure et al., 2022; Wolf et al., 2018). The intestinal stem cell lineage was isolated from
the data and includes intestinal stem cells, enteroblasts, adult differentiating enterocytes,
enteroendocrine cells, anterior enterocytes, and posterior enterocytes. The pseudotime was
generated by combining the young (FCA age 5 sample) and old (AFCA age 50 and 70 samples).
To generate this plot, the partition-based graph abstraction (PAGA) function was applied to infer
the connectivity of clusters then the ForceAtlas2 algorithm was implemented to spatially overlay
the cells onto the connectivity plot generated by PAGA (Jacomy et al., 2014; Wolf et al., 2019).
To compare the cell compositions of each age, the cells of different ages were plotted separately
next to the pseudotime. The percentages of cells comprising the intestinal stem cell lineage were
extracted from the data and then plotted on Fig 2D.

The changes in gene expression were generated using the scFates python package (Faure et al.,
2022). Cells were isolated from each age and then run separately in the scFates pipeline. Briefly,
scFates uses the EIPiGraph algorithm to learn the topography of the data. Then, the pseudotime
was constructed from the graph inferred by the EIPiGraph algorithm. The genes differentially
expressed along the trajectory were determined using a cubic spline regression model and then
these results were compared to an unrestrained model. The Benjamini-Hochberg correction was
then applied to adjust for multiple comparisons. A significantly altered gene along the trajectory
between each age, Rbfox1, is shown in Fig S11.

Fat body and indirect flight muscle staining

To label the fat body tissue with GFP, cg-GAL4 (Bloomington Drosophila Stock Center (BDSC),
#7011) virgins were crossed with UAS-unc84GFP (from Dr. Gilbert L. Henry) or UAS-CD8GFP
(from Dr. Liqun Luo) males to obtain cg-GAL4>unc84GFP or cg-GAL4>CD8GFP flies. For indirect
flight muscle labeling, Act88F-GAL4 (BDSC #38461) virgins were crossed with UAS-unc84GFP
to obtain Act88F-GAL4>unc84GFP flies. Flies were cultured at 25°C to desired ages.
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For fat body dissection, fly abdomen filet were prepared in 1X PBS using Vannas Spring Scissors
(FST, 3mm Cutting Edge, 15000-00) and Dumont #55 forceps (FST, 11255-20). For indirect flight
muscle dissection, flies in 1.5ml Eppendorf tube were snap-freezed in liquid nitrogen, placed on
the ice rack. After the head, leg and wing were removed, the abdomen was clamped with forceps
and thorax was cut in the sagittal section by a razor. Tissues were fixed with 4%
paraformaldehyde for 20 min at room temperature (RT), washed with 1X PBS, blocked in 5%
NGS blocking buffer (1XPBS, 0.3% Triton X-100, 5% NGS) for 2 h at RT, incubated with primary
antibodies (in 5% NGS blocking buffer) overnight at 4°C, and then washed 5 times with 0.3%
PBST (1XPBS, 0.3% Triton X-100) before incubation with secondary antibodies for 2 h at RT.
Tissues were thoroughly rinsed in PBST, stained with DAPI(1:1000) for 15 min, washed with
1XPBS and mounted with SlowFade™ Gold Antifade Mountant (Thermo Fisher, S36936).

Mouse anti-LamC (1:100, Developmental Studies Hybridoma Bank (DSHB), LC28.26), chicken
anti-GFP (1:1000, Aves Labs), rabbit anti-pH3 (1:1000, Cell Signaling Technology, #9701), rabbit
anti-cleaved-Caspase3 (1:100, Cell Signaling Technology, #9661) were used as primary
antibodies. For secondary antibodies, we used Cy™3 AffiniPure Donkey Anti-Mouse 1gG (H+L)
(1:250, Jackson ImmunoResearch, AB_2340813), Alexa Fluor® 488 AffiniPure Donkey Anti-
Chicken IgY (IgG) (H+L) (1:250, Jackson ImmunoResearch, AB_2340375), Alexa Fluor™ 647
Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody (1:250, Invitrogen,
A31573). Alexa Fluor 647 Phalloidin (1:250, Invitrogen, A22287) was used to stain F-actin in
muscle.

Images were obtained with Leica STELLARIS 5 confocal microscope. Images were obtained as
Z series with the same interval. Z series images were merged by ImagedJ (Image-Stacks-Z
projection-Max Intensity), and then the mean fluorescence intensity was measured (Analyze-
Measure-Mean gray value) or nucleus number was counted by Point Tool. Quantification graphs
are generated by GraphPad Prism. P-values from unpaired t-test. Error bar, standard deviation
(SD).

DEG analysis

To identify genes that are differentially expressed in the aged population, we applied the Wilcoxon
Rank Sum test (rank_genes_groups() in SCANPY) to compare the gene expression between the
aged (30d, 50d, and 70d) and the young population (5d). Genes with FDR lower than 0.05 would
be considered to be differentially expressed.

Change of cell composition

Cell numbers of each cell type were counted and then separated by age. To get the ratio of one
cell type from one age, the cell numbers of a specific cell type and age were further divided by
the total cell number of the corresponding age. The cell-type ratios from the aged population (30d,
50d, 70d) were further divided by ratios from the young population (5d) to get the relative ratios
in log2 scale.

GO analysis
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Age-specific DEGs, including up- or down-regulated genes, from each cell type were applied for
the Gene Ontology (GO) analysis using GOATOOLS (version 1.2.3) (Klopfenstein et al., 2018).
The gene association file (version FB2022 04) was downloaded from the FlyBase. Redundant
GO terms were removed by REVIGO (Supek et al., 2011). GO terms from Biological Process
(BP) were mainly used for our analysis (Fig. 3E, 3F, and fig. $16). GOs restricted within 5 cell
types were considered as cell-type specific GOs (Fig. 3E, 3F, and fig. S19A).

Aging clock analysis

For aging clock analysis, we focused on 64 head and body cell types that have at least 200 cells
at each time point. For each cell type satisfying the condition, we then built aging clock models —
regression models that predict age from the transcriptome. In particular, for each cell type we
trained the elastic net model (Zou & Hastie 2005) by using cells’ transcriptome as explanatory
(independent) variables and age as the response (dependent) variable. We randomly split the
dataset into a train and test dataset where we used 70% of cells to train the model, and 30% of
cells to validate the model. We compared the predictions to the true age and measured
performance of the model as R?, i.e., proportion of the variance for a dependent variable that's
explained by an independent variable or variables. We repeated the analysis over five random
seeds, resulting in different train and test data splits. To find genes that correlate with age, we
first filtered all genes with zero coefficient in the regression model. For the remaining genes, we
calculated Pearson correlation between its value and age and retained those genes for which the
correlation coefficient was higher than 0.3. This analysis resulted in 480 genes. We repeated the
same analysis for the Mouse Aging Cell Atlas (Tabula Muris Senis) (Tabula Muris Consortium,
2020).

To compare models between two consecutive stages, we trained three logistic regression models
for each cell type to distinguish between (i) 5 days and 30 days old fly, (2) 30 days and 50 days
old fly, and (iii) 50 days and 70 days old fly. We split the data into train and test dataset by using
70% data for training the model and 30% data for evaluation by preserving the percentage of
samples for each class (stratified sampling). We evaluated classification performance using
accuracy.

Cell-identity analysis

Change of cell-identity was based on the expression changes of marker genes between different
ages. Cell-type markers from young (5d) and old animals (50d) were identified separately using
the Wilcoxon Rank Sum test (rank_genes_groups() in SCANPY). Top 200 genes that are
differentially expressed between cell types were defined as marker genes for each cell type.
Expression of marker genes were further compared between young and old population using
Wilcoxon Rank Sum test to identify differentially expressed markers (FDR < 0.05). Young marker
genes with significant reduction of expression would be considered to decrease the cell-type
identity. On the other hand, old marker genes with significant increase of expression were also
considered to decrease the identity. Together, we used the average of these two ratios to indicate
the change of cell identity.
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AFCA website

The AFCA Website was developed with the Shiny package (v1.6.0) in R language (v4.0.5). We
included three major datasets: Head dataset, Body dataset, and Head and Body dataset, where
they contain the snRNA-Seq analytical results from head tissues, body tissues, and combined
respectively. For the Cell type and Gene Expression tabs, the data processing and visualization
were performed with the Tidyverse (v1.3.0) and ggplot2 (v3.3.3) packages in R. For the
customized analysis tab, its features and functions were powered by the ShinyCell (v2.1.0)
package.

Rank sum of aging features

We measured the absolute differences of each aging feature between the young (5d) and old
(50d) population and ranked the cell-type differences. High ranks represented high aging
differences, while low ranks indicated low differences between young and old population. To have
a better estimation, we focused on cell types with more than 200 nuclei from each age.
Correlations of different aging features were compared using the Spearman’s correlation. To
know which cell types showing high aging differences supported by different features, we summed
the ranks of five different aging features and ranked the sums. High rank sums of different aging
features represented high aging differences, and vice versa.

Analysis of alternative polyadenylation (APA) analysis

Our overall analysis strategy was based on our recent scAPA study of the FCA dataset (Lee et
al., 2022). We used LABRATSsc (https://github.com/TaliaferroLab/LABRAT) to quantify APA from
the scRNA-seq data with current FlyBase Drosophila melanogaster gene annotation (version
r6.45). Two modes were used for either single-cell level (cellbycell) or cell-type specific
(subsampleClusters) quantification using ‘--mode’ parameter. We used read coverage thresholds
of at least 3 or 100 counts per gene for single-cell level or cell-type specific quantification
respectively to minimize noise and false positives. LABRAT calculates y values reflecting 3'
isoform usage, with “0” indicating exclusive usage of the most proximal pA site, while "1" indicates
exclusive usage of the most distal pA site. W values for each annotated cell-type, and for individual
cells, were used for downstream analysis.
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Fig. $1. General pipeline of shnRNA-seq analysis and data availability.

(A) Data processing steps, including preprocessing, normalization, dimensionality reduction,
clustering, and annotation and data sharing. (B) Data available from different sources, including
NCBI, GitHub, CELLXGENE, and AFCA website.
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Fig. S4. lllustration of transferring the FCA annotation to the AFCA cells.

Flowchart of transferring the annotations from FCA to AFCA. FCA and AFCA data are first co-
coustered. Co-clustered data can be further extracted for tissue-specific cell types, e.g. gut- and
malpighian tubule-specific cell types. After subclustering targeted cells, FCA annotations are
transferred to AFCA cells using cluster-based or supervised machine-learning approaches.
Results from two transfer methods are compared and ambiguous transfers are further checked
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for the expression of the corresponding marker genes. After confirming the expression of the
marker genes, annotations are corrected and finalized.
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(A, B) Marker genes of the indirect flight muscle. (A) Loss of marker genes in the indirect flight
muscle. (B) Markers specific for the indirect flight muscle. (C) Overlapped marker genes from
renal stem cells and intestinal stem cells.
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Fig. S8. Detailed cell types annotated in the head sample shown by tSNE.
90 head cell types are shown in the tSNE plot.
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Fig. $10. Marker genes identified from the newly identified neuron clusters.

Markers of 17 newly identified neuron types are shown. Expression of general neuronal markers,
Syt1, and para, indicates the neuron specificity. Expression of VAChT, Gad1 and VGlut indicates
they are cholinergic, GABAergic, or Glutamatergic neurons.
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Fig. S11 Pseudotime inference and cellular composition of ISC and ISC-differentiated cell

types.

(A) lllustration of ISC differentiation process. (B) Cell types shown in different colors. (C) Changes
of cellular composition in the ISC lineage. (D) Age-specific profile of different cell types. (E) Rbfox1
gene shows different patterns along the young and old ISC lineage. ISC, intestinal stem cell; EB,
enteroblast; EC, enterocyte; EE, enteroendocrine cell; a. EC, anterior EC; p. EC, posterior EC;
diff. EC, differentiating EC.
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Fig. $12 Changes of cell-type composition during aging.
(A) Changes of cellular composition by comparing the nucleus ratio of the old sample (30d, 50d,
and 70d) to the ratio of the young one (5d). (B) Changes of cellular composition by comparing the
nucleus ratio between two consecutive ages. (C) Cell types with more than 2-fold changes of
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cellular composition by comparing the old samples to the young ones. (D) Cell types with more
than 2-fold changes of cellular composition by comparing the sample to the previous age.
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fat body (cg-GAI4>UAS-CD8GFP)
5-7d 25-27d \ 50d

Fig. $13. Examples of dividing nuclei without the mitosis marker.

Dividing nuclei from flies with different ages showing the absence of the mitosis marker (pH3).
Fat body nuclei are collected from different ages, including 5-7d, 25-27d, and 50d. Dividing nuclei
are stained by DAPI and LamC. The fat body membranes are labeled by cg-GAL4 > UAS-
CD8GFP.
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indirect flight muscle
young (5d) old (50d)

DAPI/Phalloidin/Caspase3

Fig. S14 Apoptosis signals form the aged indirect flight muscle.

Examples of indirect flight muscle stained by the apoptosis marker in the young and old flies. The
indirect flight muscles are stained for the apoptosis events using cleaved-Caspase3 antibody.
Nuclei are stained by DAPI. Actin filaments in the muscle cells are labeled by Phalloidin.
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(A) DEG numbers from different cell types. The aged groups (30d, 50d, and 70d) are compared
with the young population (5d). (B) Two consecutive ages are compared to identify DEGs in each

Fig. $15 DEG numbers detected in each cell type.
cell type.
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Fig. $16 Detailed ratio of DEG number across different age periods.
(A) The ratios of DEG numbers in different cell types. Each age period is shown in a different
color. (B) Number of differentially expressed genes detected in the different age period.
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Fig. $18 Sex-biased genes from each age.

(A) The number of sex-specific genes from each age. (B) Sex-biased ratios from different ages.

(C) lllustration of sex-biased ratios from several cell types.
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Fig. S19 GO frequency and the most significant GOs from the up- and down-regulated
genes.

(A-B) Up- and down-regulated DEGs are identified by comparing 50d flies to 5d flies. (A) GO
frequencies from up- and down-regulated genes. GO frequency indicates how many cell types
have the corresponding GO. The red line indicates five cell types with the corresponding GO. ((B)
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Fig. S20 Predictive performance of aging clocks.
Predictive performances of aging clocks from each cell type. Performances of head and body cell
types are shown separately.
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Fig. S21 Aging clock profiles.

(A) The cell numbers from each cell type are not correlated to the predictive performance. (B)
Examples of two cell types with good prediction of true age. (C) Expression of aging clock genes
in two different cell types.
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rps7 ps7 13 2
mpl21 mpl21 11 2
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Fig. S22 Aging clock genes present in both fly and mouse.

1-1 orthologs of 33 aging clock genes conserved between fly and mouse. Number of cell types
shown in each species indicate that the aging clock genes are detected as aging clock genes in
the corresponding number of cell types.
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Expression of two orthologous aging clock genes.
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Sequencing saturation of different batches of samples.

(A) Numbers of expressed genes and UMIs per cell are decreased in the aged CNS neurons (30d

Fig. S24 Variance of UMI and expressed gene numbers dur
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Fig. S25 Changes of cell-type identity during aging.
Cell types ranked by the decline of cell-type identity during aging. Decrease of young markers
and increase of old markers are shown separately in each cell type.
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(A) Cell types ranked by the sum of different aging feature scores.
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Fig. S28 Comparisons between the AFCA and the Drosophila cell landscape (DCL)
datasets.

(A) A comparison of the number of annotated cell types between our AFCA and DCL (Wang et
al., 2022). The AFCA dataset annotates significantly more cell types than DCL. For example, the
AFCA annotates a higher number of cell types in glial, CNS neuronal, and sensory neuronal cells
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compared to the DCL. (B) 38.9% of the DCL cells belong to the follicle cells of the ovary, indicating
a sampling bias of this cell type. (C) The neuronal lineage composition of the DCL dataset. Note
that glial cells are only detected in 2 out of 7 ages, and GABAergic neurons are not detected in
36d but account for 90% at 41d. (D) The gut lineage composition of the DCL dataset. Note that

no intestinal stem cells are annotated. B-D plots are from the DCL website portal,
http://bis.zju.edu.cn/DCL/.
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Fig. S29 Comparison of alternative polyadenylation (APA) scores across different ages.
(A-B) The circular heatmaps summarize APA trends from the annotated neuronal extended genes
across different time points in females (A) and males (B). We use the LABRATSsc package to
calculate y and average value for 391 neuronal extended genes, which are plotted in each of the
neuronal types from the AFCA head data. (C) UMAP of different neuronal types designated by
the AFCA. Average 3' isoform usage of 391 neural extended genes is plotted in individual cells
by different aging time-points. Both analyses show that neuronal extended 3' isoforms are
progressively depleted during aging. This phenotype is stronger in females at 70d.
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Movies S1-S3. 3D reconstructions of two attached nuclei in the same fat body cell.
Attached nuclei are stained by DAPI and LamC. The membranes of fat body cells are labeled by
cg-GAL4 > UAS-CD8GFP.
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