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Abstract 
Aging is characterized by a decline in tissue function, but the underlying changes at cellular 
resolution across the organism remain unclear. Here, we present the Aging Fly Cell Atlas (AFCA), 
a single-nucleus transcriptomic map of the whole aging Drosophila. We characterize 162 distinct 
cell types and perform an in-depth analysis of changes in tissue cell composition, gene 
expression, and cell identities. We further develop aging clock models to predict the fly age and 
show that ribosomal gene expression is a conserved predictive factor for age. Combining all aging 
features, we find unique cell type-specific aging patterns. This atlas provides a valuable resource 
for studying fundamental principles of aging in complex organisms. 
 
Short title: Aging Fly Cell Atlas 
 
Key words: aging, Drosophila, single-nucleus RNAseq, cell atlas 
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Introduction  
Aging is characterized by the progressive decline of tissues across the entire body. It is a major 
risk factor for a wide range of diseases, including cardiovascular diseases, cancers, and 
neurodegenerative diseases (López-Otín et al., 2013; Niccoli and Partridge, 2012). Aging 
phenotypes have been observed and described for centuries and a number of different aging 
hypotheses have been proposed (e.g., Harman, 2003). However, critical questions remain largely 
unaddressed in complex organisms: How does aging impact cell composition and the 
maintenance of specific cell types? Do different cell types age at the same rate? Can we use one 
cell type’s transcriptome to predict age? What genes and signaling pathways drive aging in 
different cell types? 
 
The fruit fly Drosophila melanogaster has been at the basis of many key discoveries in genetics, 
neurobiology, development, and aging. About 75% of human disease-associated genes have 
functional homologs in the fly (Baldridge et al., 2021; Bellen et al., 2010). Many of the age-related 
functional changes in humans are also observed in flies, including a decline in motor activity, 
learning and memory, cardiac function, and fertility (Grotewiel et al., 2005). Hence, a proper 
description of the molecular and genetic basis of the age-related decline in flies should provide 
an important resource for aging studies not only in flies but also in other organisms.  
 
The recent development of single-cell RNA sequencing (scRNA-seq) technologies and the 
establishment of the Fly Cell Atlas (FCA) (Li et al., 2022), a single-cell transcriptomic atlas of 
Drosophila (5-day-old; 5d hereafter), have made it possible to investigate aging phenotypes 
across the whole organism at single-cell resolution. Here, we present the Aging Fly Cell Atlas 
(AFCA), a single-cell transcriptomic map describing changes that occur in most tissues over the 
lifetime of the fly, including male and female transcriptomic data to identify sex differences. We 
performed an in-depth analysis of age-related gene expression and cell composition changes 
across the entire fly, as well as cell type-specific and common pathways that correlate with aging. 
Interestingly, we observed a significant increase of fat body nuclei with age and our in vivo data 
validated the observation. We also observed an increase of apoptotic markers in old indirect flight 
muscles, which may underlie the age-related decrease of muscle nuclei. Furthermore, we 
developed aging clock models that predict the animal’s age from the single-cell transcriptomic 
data. In addition, we found aging variances in expressed gene number, as well as cell-type 
identity. Our analysis revealed that different cell types are uniquely impacted by different aging 
features. This aging atlas provides a valuable resource for the Drosophila and aging community 
as a reference to study aging and age-related diseases. To make the data easy to access and 
use, we developed a website portal for data visualization and custom analyses, and made data 
available at the CELLxGENE portal (fig. S1 and S2). All resources can be accessed at 
www.flyagingatlas.org.  
 
Results 
Single-Nucleus Transcriptomes of the Entire Fly from Different Ages 
To generate the Aging Fly Cell Atlas (AFCA), we applied the same single-nucleus RNA 
sequencing (snRNA-seq) pipeline that was used for the Fly Cell Atlas (FCA, 5d adults) (Li et al., 
2022) and profiled the whole head and body from three additional ages (30d, 50d and 70d). These 
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time points were chosen to cover the trajectory of a fly’s life based on the lifespan curve generated 
from the same cohort of flies (Fig. 1A), including 70d old flies, the estimated equivalent of 80-90 
year old humans. Male and female flies were sequenced separately, allowing the investigation of 
sexual dimorphism during aging (Fig. 1B; see below). To achieve the most reliable analyses of 
aging features, we performed preprocessing of the new aging snRNA-seq data similar to the 
young FCA data, including index-hopping removal, normalization, doublet removal, and batch-
effect correction (fig. S1A). Consistent with the previous scRNA-seq study of the aging fly brain 
(Davie et al., 2018), we found that young and old cells have similar distribution, suggesting the 
whole organisms largely maintains their cell-type identities during aging (Fig. 1C). Overall, by 
combining the FCA with the new aging data, we obtained more than 868,000 cells covering all 17 
broad cell classes (Fig. 1, D and E). The detected numbers of expressed genes and UMIs were 
largely consistent across different ages (fig. S3). The most abundant cell classes were neurons, 
epithelial cells, muscle, fat cells, and cells from the female reproductive system. To explore 
comprehensive aging features across the whole fly, we next annotated those broad cell classes 
into detailed cell types.  
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Figure 1. Overview of aging fly cell atlas (AFCA).  
A) Flowchart of snRNA-seq experiment. Wild-type male and female flies are collected at 30, 50, 
and 70 days after eclosion, and head and body are separated. 5d samples are from the previous 
FCA data. Fly nuclei are extracted and collected using FACS for 10x Genomics based snRNA-
seq.  
B) Number of nuclei collected from different ages. Bars for the number of male and female cells 
are shown in different colors. 
C) tSNE visualizations of the head and body samples from different ages. Datasets from different 
ages are shown in different colors.  
D) tSNE visualizations showing broad cell classes of datasets integrated across different time 
points. Different colors denote broad cell classes. 
E) Cell number of each broad cell class shown in Fig 1D. Different colors denote broad cell 
classes. 
 
 
 
 
AFCA Cell Type Annotation and Resource for Studying Cell Type-Specific Aging  
Since cell type-specific aging analysis largely depends on the accurate annotation of cell types, 
we took several complementary approaches to ensure that our new AFCA data are annotated 
with high confidence. In particular, we first co-clustered our aging data with the annotated FCA 
data, from either the head/body or individual tissues. Then we transferred AFCA annotations 
using two independent methods: a cluster-centered method and a supervised machine-learning 
based method (fig. S4 and S5, Methods). Overall, we found that these two approaches agree 
well with an 80% overlap of annotations between these two independent methods across the 
organism (Fig. 2A). The discrepancies of the non-overlapping annotations were mostly due to 
uncharacterized cell types in the FCA data or cell types with aging differences. Next, we manually 
validated each cell type annotation using cell type-specific markers. Marker validation confirmed 
the accuracy of our automatic annotation procedure, with a few exceptions such as indirect flight 
muscles due to age-related loss of specific markers (fig. S6A-B) and gut cell types due to the 
high similarity between intestinal stem cells and renal stem cells (fig. S6C). These cell types were 
then manually added and corrected (fig. S5 and S7). Overall, we characterized 162 distinct cell 
types, including 90 cell types from the aging head and 72 cell types from the aging body (Fig. 2B, 
fig. S8 and S9). Note that we could not reveal all 251 cell types annotated in the previous FCA 
study, because many FCA annotations are from dissected tissues with deep sequencing (e.g., 37 
cell types from the testis with more than 43,000 nuclei sequenced and 18 types of olfactory 
receptor neurons from the antenna with more than 37,000 nuclei sequenced).  
 
For complex tissues, like the brain, more cell types are resolved when significantly more cells are 
sequenced (Janssens et al., 2022; La Manno et al., 2021; Zeng, 2022). Indeed, 17 new neuronal 
cell types emerged after combining young and old head data with distinct cell markers (Fig. 2C). 
Among them, 4 are GABAergic neurons (Gad1+), 2 are Glutamatergic neurons (VGlut+), and the 
remaining 11 types are cholinergic neurons (VAChT+) (fig. S10).  
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Next, we assessed if the AFCA provides a reliable resource to investigate age-related changes 
in certain tissues or cell types. We focused on the fly gut as a case study, where the somatic stem 
cell lineage and its aging have been well characterized in the past decade (Li and Jasper, 2016). 
In a healthy young fly gut, intestinal stem cells (ISCs) maintain gut homeostasis through proper 
proliferation and differentiation. In old guts, ISCs exhibit a high proliferation rate, and their 
daughter cells, enteroblasts (EBs), do not properly differentiate into mature enterocytes, leading 
to a dysplasia phenotype (Jasper, 2020; Micchelli and Perrimon, 2006; Ohlstein and Spradling, 
2006). We first extracted six major gut cell types from the body data – ISCs, EBs, differentiating 
enterocytes, anterior enterocytes, posterior enterocytes, and enteroendocrine cells, and 
performed pseudotime trajectory analysis (Jacomy et al., 2014; Wolf et al., 2019). Interestingly, 
there is a significant increase of ISCs and EBs along with a decrease of fully differentiated 
enterocytes, consistent with previous in vivo studies (Fig. 2D, fig. S11) (Rodriguez-Fernandez et 
al., 2020). This trajectory analysis also allowed us to identify genes that showed different dynamic 
patterns along the ISC lineage between young and old flies (fig. S11E). In summary, the detailed 
annotations in our AFCA data offer a valuable resource to explore cell type- and tissue-specific 
aging signatures.  
 
All the AFCA annotations and data can be accessed through our web portal 
www.flyagingatlas.org. We also provide a customized platform which allows users to flexibly 
survey different features, including cell-type, age, and sex variations (see fig. S2). 
  
Cell Composition Changes During Aging 
In complex organisms, aging can affect cellular composition in different ways, such as changing 
stem cell proliferation or differentiation processes, altering cell identity, or inducing cell death. We 
assessed whether and how aging impacts cellular composition across the whole fly. Note that our 
data are profiles of single nuclei, so our measurements are based on nuclei composition. Since 
the nuclei are extracted from the whole head and body with minimal sampling bias, the ratio for 
each cell type in our sequencing data should largely reflect their composition in vivo.  
 
To perform reliable analyses, we focused on cell types that have more than 500 nuclei in total 
(112 cell types after filtering). We then calculated the composition changes by comparing three 
older ages (30d, 50d, 70d) to young flies (5d). The top 5 increased cell types are cardia cells 
(proventriculus from the gut), fat body cells, male accessory gland main cells, EBs, and adult 
salivary gland cells (Fig. 2E). Comparing two consecutive ages showed similar results (fig. S12). 
Age-related increases of proventriculus cells, male accessory gland main cells, and EBs from the 
gut have been reported previously (Biteau et al., 2008; Regan et al., 2016; Rezaei et al., 2015), 
confirming the quality of our data and analysis. Fat body cells are one of the most abundant cell 
types in Drosophila. They are polyploid, filled with lipid droplets, and tightly attached to the 
abdominal cuticle. These features make it difficult to isolate them or to compare their compositions 
using traditional imaging or cell-isolation and counting methods. To our knowledge, an increase 
of fat body nuclei in old flies has not been reported. We were able to validate this observation by 
dissecting young and old fly abdomen filet and manually counting fat body nuclei (Fig. 2F).  
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Fat body cells are postmitotic cells, and no adult stem cells or progenitor cells have been reported 
to regenerate adult fat body cells (Arrese and Soulages, 2010). To examine why fat body nuclei 
were increased in old flies, we first checked the number of nuclei within single cells using a fat 
body-specific GAL4 driving cell membrane GFP (cg-GAL4 > UAS-CD8GFP). Interestingly, many 
aged fat body cells exhibited an increase in cell size and contained multiple nuclei per cell (Fig. 
2G). The multinucleated phenotype can potentially be caused by cell membrane fusion as 
reported in other cell types (Losick et al., 2013), but cell fusion cannot explain the increase in the 
number of nuclei observed by snRNA-seq and in labeled tissue (Fig. 2, E and F). It has been 
reported that polyploid enterocytes from the fly gut can undergo nuclear cleavage without mitosis 
after starvation-induced stem cell loss (a process termed amitosis) (Lucchetta and Ohlstein, 
2017). To test this possibility, we performed immunohistochemistry to detect the nuclear lamina 
protein, Lamin C (LamC), and a mitosis marker, Phospho-Histone H3 (pH3), in fat body cells. We 
did not detect any mitotic events from more than 60 flies across different ages, but we did observe 
many cases where two nuclei were localized very close to each other and they were negative for 
the mitotic marker (Fig. 2H). 3D reconstruction of confocal images confirmed that these nuclei 
were present in the same cell without a separating cell membrane (Movies S1-S3). Such events 
were captured across different ages (fig. S13). Together, these data suggest that fat body cells 
undergo nuclear division without cytokinesis across different ages, leading to multinucleated cells 
and an increase in the number of nuclei in older flies. The formation of multinucleated cells has 
been documented in human hepatocytes (Chen et al., 2012; Kudryavtsev et al., 1993) and it will 
be of interest to further investigate molecular mechanisms and physiological functions (see 
Discussion).  
 
Among the top 5 decreased cell types are three types of muscles – indirect flight muscle, visceral 
muscle, and other muscle cells (mostly skeletal muscle) (Fig. 2E). Loss of muscle mass and 
strength or sarcopenia is a conserved aging phenotype across different mammals, including 
humans (Doherty, 2003). Due to the unique fiber structure and multinucleation of muscle cells, it 
is difficult to count total muscle nuclei from the whole animal. Our in vivo staining data confirmed 
the age-related degeneration of indirect flight muscles as well as a significant increase of an 
apoptosis marker Caspase3 in old flies (Fig. 2I and fig. S14), consistent with a previous study 
(Jeon et al., 2015). Germ line cells also showed a significant decrease (Fig. 2E, fig. S12), 
presumably contributing to the decline of fecundity in old flies. The majority cell types from the 
head, mostly neurons, showed no or minimal cellular composition changes (Fig. 2E; fig. S12).  
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Figure 2. AFCA resource and changes of cell composition during aging.  
A) Flowchart of transferring annotations from FCA to AFCA. See fig. S4-S7 and Methods for 
details.  
B) Cell types annotated in the AFCA head and body shown by tSNE. Number of annotated cell 
types corresponding to the broad cell classes are shown in the table. See fig. S8 and S9 for 
detailed annotations.  
C) Identification of 17 new neuronal clusters after combining AFCA and FCA head data. See fig. 
S10 for top marker genes. 
D) Pseudotime and cellular composition of ISC and ISC-differentiated cell types. The ratio of ISCs 
and EBs increases with age, while the ratio of ECs decreases. ISC, intestinal stem cell; EB, 
enteroblast; EC, enterocyte; EE, enteroendocrine cell; a. EC, anterior EC; p. EC, posterior EC; 
diff. EC, differentiating EC.  
E) Changes of cellular composition during aging. Each dot represents one cell type. Each color 
means the comparison between one aged sample and the young sample (5d). Dot sizes reflect 
the cell numbers of the corresponding cell type from the aged population. Tissue origins are 
indicated.  
F) Comparison of the number of nuclei of fat body from young and old flies. Nuclei are stained by 
DAPI and counted in each fly. The nucleus numbers are significantly increased in the 50d 
population (t-test, 50d vs. 5d, P value=0.0023). Error bar, standard deviation (SD).  
G) Representative confocal images showing nuclei in young and old fat body cells. The fat body 
cell membrane is labeled by cg-GAL4 > UAS-CD8GFP. Nuclei are stained by DAPI and the LamC 
antibody.  
H) Fat body cell with segregating nuclei stained by pH3, DAPI, LamC, and GFP. pH3 signal is not 
detected in the segregating nuclei.  
I) Indirect flight muscle stained with cleaved-Caspase3 antibody, DAPI, and Phalloidin. Cleaved-
Caspase3 signals are significantly increased in the aged population (t-test, 50d vs. 5d, P 
value<0.0001). Median numbers indicated. 
 
 
 
Differentially Expressed Genes (DEGs) 
Altered gene expression is another consequence of aging. To assess such changes, we 
performed the differentially expressed gene (DEG) analysis between young and old flies 
(Methods) and ranked cell types by the number of DEGs between young and old flies (Fig. 3A; 
fig. S15A). Again, we focused on 112 cell types with more than 500 cells for a reliable analysis. 
In the body, the cell type with the highest number of DEGs was the fat body, while in the head, 
the most affected cell type was the outer photoreceptor, including R1 to R6 (Fig. 3A). 
 
To explore the dynamics of cell type-specific changes, we further examined the time window 
during which cell types change the most by computing DEG numbers between two neighboring 
ages (5d/30d, 30d/50d, and 50d/70d; fig. S15B) and normalizing their ratios (Fig 3B; fig S16). 
This analysis revealed several interesting insights (Fig 3, B and C). Specifically, about 80% of 
the cell types showed major changes (> 50% of DEGs) during the first time window, suggesting 
that 30d old flies have captured a large portion of age-related gene changes for these cell types, 
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as for example observed in visceral muscle of the crop. Some cell types, like the male accessory 
gland, showed minimal changes in the last time window, indicating these cell types reach their 
maximum transcriptomic changes around 50d. However, 5.3% of types showed dramatic changes 
(> 50% of DEGs) in the last time window, such as intestinal stem cells and cardia cells, suggesting 
they age at a slower rate during the first 50d. Other cell types showed a steady rate of change in 
DEG, such as outer photoreceptors and fat body cells. Hence, this analysis indicates that different 
cell types age in different ways. 
 
By integrating cellular composition changes and DEG analysis, we further determined which cell 
types were affected by those two parameters (Fig 3D). Significantly affected cell types (‘outliers’) 
fell into four categories: 1) cells showing changes for both, such as fat body cells from the body, 
pericerebral adult fat mass (fat cells from the head), and male accessory gland main cells; 2) cells 
showing a high number of DEGs but minimal composition changes, such as eye outer 
photoreceptors and cone cells, consistent with a previous study reporting that the age-related fly 
visual decline is not due to the loss of photoreceptors (Hall et al., 2017); 3) cells showing 
decreased nucleus number and a moderated number of DEGs, such as indirect flight muscles; 4) 
cells showing increased nucleus number but minimal DEGs, such as cardia.  
 
Since we sequenced male and female flies separately, the dataset allowed us to explore how 
aging affects the sexual dimorphism across cell types. We first observed that female marker yolk 
protein genes (Yp1, Yp2, and Yp3) showed significant decrease during aging in most female cell 
types, while the male markers (roX1 and roX2) maintained high expression levels in most male 
cells (fig. S17), suggesting aging indeed impacts male and female cells differently. It has been 
shown that different cell types exhibit a varied number of DEGs between males and females at a 
young age (Li et al., 2022). How do these numbers change during aging? To address this 
question, we calculated the number of DEGs between males and females and examined their 
dynamics along aging. Typically, if one cell type showed a high (e.g., fat body cells) or low (e.g., 
Johnston organ neurons) number of DEGs at 5d, it maintained the high or low number during 
aging (fig. S18A). However, some cell types showed age-specific sex differences. For example, 
three cell types from the head, pericerebral adult fat mass, skeletal muscle, and hemocyte, all 
showed low DEGs at the young age, but high DEGs in old flies (fig. S18). In contrast, three glial 
populations showed a significant decrease of DEGs with age (fig. S18C).  
 
Analysis of Gene Pathways 
Next, we asked which genes and pathways are enriched in those DEGs. Gene ontology (GO) 
analysis was performed for both up- and down-regulated genes (fig. S19). Most GO terms were 
cell type-specific (fig. S19A): only about 20% GO terms were shared by >5 cell types out of 112 
cell types for down-regulated genes and 40% for up-regulated genes. Interestingly, we found that 
one GO term from down-regulated genes, called ‘cytoplasmic translation’, was shared by almost 
all cell types. Cytoplasmic translation refers to the ribosome-mediated process for protein 
synthesis. Indeed many transcripts of genes encoding ribosomal proteins were decreased across 
cell types, consistent with previous studies showing age-related reduction of protein synthesis in 
different tissues (see below) (Gonskikh and Polacek, 2017). There were no globally shared GOs 
among the up-regulated genes. Instead, they were restricted to specific groups of cells, like signal 
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transduction seen in neuronal cell types and protein phosphorylation enriched in different non-
neuronal cells (fig. S19).  
 
In addition to the shared GOs, we focused on GOs enriched within a few cell types to understand 
the cell type-specific regulations (Fig. 3E and 3F). For example, fat body cells from body and 
head (pericerebral adult fat mass) shared metabolic-related GO terms from up-regulated genes, 
such as lipid homeostasis and triglyceride homeostasis (Fig. 3E), suggesting a coordinated 
increase of these two tissues for metabolic regulation. For indirect flight muscles, a reduction of 
locomotor behavior was observed and is likely to be caused by the dysregulation of muscle 
structure and the reduction of their nucleus number (Fig. 3E; also see Fig. 2E). Also, sex 
reproduction-related genes were strongly decreased in male accessory gland main cells, 
suggesting a decline in reproductive ability in males (Ruhmann et al., 2018). In summary, we 
observed that genes involved in “cytoplasmic translation” are commonly decreased during aging 
in many cell types and most other GO terms showed cell type-specific patterns corresponding to 
the functions of these cell types. 
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Figure 3. Differentially expressed genes (DEGs) 
A) Number of DEGs from different cell types. Each aged group is compared with the young 
population (5d). Each line shows the number of DEGs from the indicated age comparison. Cell 
types are ranked by DEG numbers from high to low (50d vs 5d). Top 10 cell types are indicated.  
B) Ratio of DEGs from each age comparison. Dynamic age comparisons, including 30d vs. 5d, 
50d vs. 30d, and 70d vs. 50d, identify different numbers of DEGs from each age period (Methods). 
Arrows point out representative cell types that would be further compared in Fig. 3C.  
C) Cumulative ratios of DEGs from cell types indicated in Fig. 3B.  
D) Combination of DEG number and change of nucleus number illustrate different aging patterns.  
E-F) Top 5 cell type-specific GOs from selected cell types. E) GOs enriched in the selected cell 
types based on up-regulated DEGs. F) GOs enriched in the selected cell types based on down-
regulated DEGs. 
 
 
 
Aging Clock to Predict the Biological Age  
To predict the biological age of an animal or human, a number of different aging clock models 
have been recently developed using epigenetic markers and transcriptomic data (Horvath and 
Raj, 2018; Buckley et al., 2022; Davie et al., 2018). Here, we investigated whether our snRNA-
seq data can be used to develop an aging clock, a cell type-specific age predictor. To perform a 
more accurate prediction, we focused on cell types that have more than 200 cells at each age 
point, with a total 64 cell types after filtering. For each cell type, we trained an Elastic Net 
regression model (Zou and Hastie 2005) to predict age by using its transcriptome as features 
(Methods). We measured predictive performance using the coefficient of determination or R2 
which represents the proportion of the variation in the age variable that was predictable from the 
transcriptome (Fig 4A). The average performance across all cell types was high (average R2=0.79 
for body and 0.84 for head). Next, we asked what types of cells and what genes can be best used 
to predict the fly’s age. 
 
Outer photoreceptor cells and oenocytes showed the highest predictive scores in head and body, 
respectively (Fig. 4. B, C, fig. S20). Drosophila oenocytes are large secretory cells present in the 
abdomen which perform liver-like functions including lipid storage and metabolomics functions, 
similar to fat body cells (Ghosh et al., 2020). We confirmed that high scores were not caused by 
higher cell numbers (fig. S21A). We further asked whether there is a difference in predictive 
performance between different time points. To explore this, we trained a logistic regression 
classifier to distinguish between transcriptomes of consecutive time points. We found that the 
classifier achieved near-perfect performance in distinguishing between 5d and 30d old flies in 
both head and body, indicating that the largest transcriptomic differences are present between 
the first two ages (Fig. 4D). 
 
Next, we focused on identifying aging clock genes that are used to predict the animal’s age 
(Methods). First, we found that most aging clock genes are used in a cell type-specific manner – 
for example, among the top 480 genes, only 8 genes are shared for more than 20 cell types (Fig. 
4E). Interestingly, 70 out of 94 fly ribosomal protein genes were identified as aging clocking genes, 
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showing age-related reduction in different cell types (Fig. 4, E to G). This data is consistent with 
our previous GO analysis where ‘cytoplasmic translation’ is reduced in almost all cell types. 
Decreased protein turnover, which can be caused by the reduction of ribosomal proteins, is a 
prevalent feature of aging (Basisty et al., 2018). Many studies have demonstrated that the overall 
level of protein synthesis is reduced with age across many species, including flies, mice, rats, and 
humans (Anisimova et al., 2018). Our data suggest that reduction of ribosomal expression 
contributes to the age-related decrease of protein synthesis and turnover. To further investigate 
the relationship of aging clock genes across species, we identified aging clock genes for Mouse 
Aging Cell Atlas (Tabula Muris Senis) (Tabula Muris Consortium, 2020). Interestingly, we 
observed that a large portion of overlapping aging clock genes from the fly and mouse encode 
ribosomal proteins (Fig. 4H; fig S22, S23). 
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Figure 4. Aging clock analysis.  
A) Example of aging clocks for outer photoreceptor cells (top) and adult oenocytes (bottom). 
Aging clocks are cell type-specific regression models that predict age from transcriptome data. 
Red line is the fitted regression line. Blue dots represent individual predictions where each dot 
corresponds to one cell. We measure performance as the proportion of the variance for an age 
variable that's explained by transcriptome (R2).  
B, C) Predictive performance of cell type-specific aging clocks for B) head cell types and C) body 
cell types. Performance is measured as the mean R2. 15 cell types with the highest scores are 
shown. Error bars are estimated as a standard deviation over 5 runs. 
D) Accuracy of logistic regression models trained to distinguish transcriptome between two 
consecutive time points. Boxplots show distribution across head cell types (left) and body cell 
types (right).  
E) Number of aging clock genes as a function of the number of cell types (left). 80% of genes 
appear in less than 5 cell types. Out of 480 genes identified as aging clock genes, 70 encode 
ribosomal proteins (right).  
F-G) Examples of aging clock genes for outer photoreceptor cell F) and adult oenocyte G). Cell 
type-specific genes that appear in less than 5 cell types are shown in black color, while genes 
that appear in at least 5 cell types are marked in red color. 
H) Venn diagram comparing aging clock genes in fly and mouse. Aging clock genes in mice are 
derived from Tabula Muris Senis dataset. 33 genes are 1-1 orthologs between the two species, 
and 29 of these genes encode ribosomal proteins. See fig. S22 for gene names. 
 
 
 
Comprehensive Aging Features 
Through the above analyses, we noticed that different cell types are sensitive to different aging 
measurements. For example, the outer photoreceptors showed a high number of DEGs, but a 
minimal change of cell number; germline cells showed decreased cell numbers, but a very low 
number of DEGs. To gain a better understanding of cell type-specific aging, we investigated more 
aging features, including expressed gene number or transcript number (measured by UMI) 
changes, and decline of cell identity (Fig. 5A).  
 
Similar to the aging clock analysis, we only focused on cell types with at least 200 cells from each 
age for a reliable analysis. Gene and UMI numbers were previously found to decrease in the fly 
aging brain (Davie et al., 2018). Indeed, we observed that the CNS neurons decrease the gene 
or UMI numbers during aging (fig. S24A). To understand whether such a reduction is a general 
aging feature across different cell types, gene and UMI numbers from all cell types were compared 
between different ages (Fig. 5B, fig. S24B). The overall trend of gene and UMI numbers was 
largely consistent. Focusing on expressed gene numbers, we found that around 80% of cell types 
decreased expressed gene numbers per cell, but 20% increased the expressed gene number per 
cell, suggesting that aging affects expressed gene numbers in a cell type-specific manner. Head 
hemocytes and pericerebral adult fat mass increased most in expressed gene numbers, while 
oenocytes, ventral nervous system, and fat body decreased most (Fig. 5B, fig S24C). The 
variation of expressed gene number per cell was less likely caused by the differences in 
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sequencing depth since the sequencing saturation is over 90% for most of our samples (fig. 
S24D). Even though head and body fat body cells both increased the nucleus number (Fig. 3D), 
their expressed gene numbers were changed in the opposite trends during aging, supporting the 
idea that different aging features are differentially regulated.  
 
Loss of cell-type identity has been shown to occur during aging for certain cell types (Izgi et al., 
2022; Li et al., 2016). However, how cell identity is changed across the entire organism during 
aging remains uncharacterized. To characterize the cell identity changes, we developed a 
measurement to combine two ratios – loss of original markers and gain of new markers – by 
comparing old to young populations (Fig. 5C, left panel) (Methods). We measured these two 
factors and ranked cell types by their cell identity decline score (Fig. 5C, right panel). The gene, 
Nlg1, which was used as a marker gene to annotate the indirect flight muscle, showed a dramatic 
decrease with age, similar to a number of other young marker genes (Fig. 5C, fig. S6A). 
Meanwhile, many other genes began to appear in this cell type with aging (fig. S6A). Other than 
the indirect flight muscle, pericerebral adult fat mass, epithelial cell from the head, male accessory 
gland main cell, and outer photoreceptor cell were also found to largely decrease cell-type identity 
(fig. S25-S26).  
 
Correlation and Ranks of Aging Features  
Together with the previously analyzed three aging features – cell composition (Fig. 2E), DEG 
analysis (Fig. 3), and aging clock scores (Fig. 4) – we examined five different aging features in 
total. To understand the overall correlation of different aging features, we ranked each feature 
from the least age-related change to the most (Methods). After integrating five aging features, 
their correlations were compared using Spearman’s correlation and clustered using the 
correlation scores (Fig. 5F). Among the five features, DEG number and cell identity were highly 
correlated with each other, suggesting cell types with high number of DEGs would usually 
fluctuate in the expression of marker genes. On the other hand, change of cell number, and 
expressed gene number were more correlated with each other, while the aging clock score 
seemed to be more independent of other features.  
 
To categorize which cell types have more aging features, we summed different feature ranks and 
sorted cell types by the total rank sums, higher rank meaning more “aged” (Fig. 5G, fig. S27). 
Interestingly, the top four cell types include three adipose cell types, oenocytes, fat body cells, 
and pericerebral adult fat mass (fat cells from the head), as well as indirect flight muscle cells, 
suggesting that those cells age faster than other cell types. Following them are two reproduction-
related cell types, male accessory gland main cells and follicle cells from the ovary, indicating that 
reproductive systems also undergo fast aging. Generally, neurons and glia from the nervous 
system age slower compared to other cell types (Fig. 5G). In summary, our analysis provided the 
first exhaustive analysis of different aging features and revealed the aging rates of different cell 
types across the entire fly. 
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Figure 5. Systematic comparisons of different aging features. 
A) Flowchart of comparing different aging features.  
B) Age variation of detected gene numbers per cell. Expressed gene numbers per cell from each 
cell type are compared between old (50d) and young (5d) flies. The red block shows cell types 
with increased gene number during aging, while the blue block includes cell types with decreased 
one.  
C) Two cell types, hemocyte from the head and oenocyte, have the highest increase and decrease 
of expressed gene numbers per cell.  
D) Decline of cell identity during aging. The left panel illustrates two different mechanisms of 
decreasing cell identity. The right panel shows the ratio of marker genes decreasing cell identity. 
Each line in the right panel represents one cell type.  
E) Spearman’s correlation of different aging features. The correlations of five different aging 
features are compared in 64 cell types.  
F) Rank sum of different aging features. The heatmap shows the overall rank sum scores from 
different cell types. High aging ranks are shown in red, while low aging ranks are shown in blue. 
Neuron- or glia-related classification are shown beside the heatmap. 
 
 
 
 
Discussion  
In complex organisms, different cell types possess distinct characteristics of their corresponding 
functions. For example, somatic stem cells need to proliferate and differentiate to replenish the 
tissue, while postmitotic neurons remain alive and functional during the lifespan of the organism. 
Hence, aging causes a physical and functional decline of all cell types in very different manners. 
Understanding how different cell types are impacted by aging is critical for designing interventions 
that delay aging and improve health. Molecular genetic approaches in Drosophila have helped 
elucidate fundamental mechanisms and principles in genetics, development, and neurobiology. 
The AFCA provides a resource for the aging community to investigate aging and age-related 
diseases at a single-cell resolution.  
 
The cell atlas approach is emerging as a powerful tool to systematically study aging in different 
organisms, including C. elegans (Roux et al., 2022), mouse (Tabula Muris Consortium, 2020), 
and humans (Sziraki et al., 2022). A recent study performed cross-species analysis with single-
cell RNAseq data from three different species, including Drosophila from 11d to 41d (Wang et al., 
2022). However, this study uses a single-cell RNAseq protocol, and thus, many cell types which 
cannot be efficiently isolated as intact cells, are not revealed (33 annotated cell types versus 162 
in our study) (fig. S28). For example, they annotated 1 glial type (15 types in AFCA), 1 type of 
sensory neuron (12 types in AFCA), and 5 types of CNS neurons (72 types in AFCA) (fig. S28A). 
As a consequence, easily-isolated cell types are overrepresented (e.g., 38.9% cells from the 
dataset are follicle cells from the ovary) (fig. S28B). Also, male and female flies are not separated 
in this study. Our study employed an unbiased single-nucleus RNAseq approach, allowing us to 
survey cell composition changes more faithfully. We sequenced male and female flies separately, 
allowing to study sexual dimorphism along aging (fig. S17 and S18). The AFCA atlas contains 
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samples from older populations (50d and 70d) covering the whole lifespan. Overall, our AFCA 
provides a complementary but more thorough and complete dataset for studying aging features 
across the whole organism.  
 
One interesting observation is the significant increase of fat body nuclei during aging. Drosophila 
fat body is a liver-like tissue that stores fat and serves as a detoxifying and immune responsive 
organ. Adult fat body cells are postmitotic polyploid cells without a stem cell or progenitor 
population (Arrese and Soulages, 2010). How do they increase their nucleus number? Our 
observations suggest that these polyploid cells increase their number of nuclei by nuclear 
cleavage without cytokinesis, forming multinucleated cells. To complete karyokinesis, the nuclear 
envelope needs to be reassembled or reorganized. Interestingly, fat body cells have been shown 
to decrease their nuclear envelope integrity due to the loss of Lamin-B during aging (Chen et al., 
2014). It will be of interest to study whether the loss of nuclear envelope integrity is associated 
with the multinucleated phenomenon. On the other hand, multinucleated cells have also been 
observed in the fly male accessory gland (Bertram et al., 1992, Box et al., 2022) and 
subperineurial glia cells (Unhavaithaya and Orr-Weaver, 2012), suggesting multinucleated cells 
play specific roles in Drosophila. Other than Drosophila, multinucleated cells have also been 
observed in other species, including mushrooms (Gehrmann et al., 2018), plants (von Aderkas et 
al., 2005), and human and mouse liver cells (Chen et al., 2012). Understanding the formation and 
regulation of multinucleated cells in the aging organism may provide new insights into an 
evolutionarily conserved phenomenon, as well as into the potential roles of multinucleated cells 
in age-related diseases. 
 
We focused on five different aging features in this study. Although these features cover several 
key aspects of age-related changes, the picture is not complete. Additional aging measurements 
may reveal more specific aging patterns. For example, we investigated the change of alternative 
polyadenylation (APA) patterns, which can reflect short or long 3’ UTR usage for different isoforms 
(Lee et al., 2022), and found that neuronal extended 3' isoforms were progressively depleted 
during aging. This phenotype is more obvious at 70d and more pronounced in females than in 
males (fig. S29). These data imply a global change in post-transcriptional regulation in 
aging neurons. Thus, future specific analysis may help elucidate additional aging patterns.  
 
One major goal of this study is to characterize how different cell types age across the organism. 
Our analysis using five different aging features provides several interesting insights. First, different 
cell types have very distinct aging patterns. For example, the fat body cells showed high ranks for 
4 aging features but low for aging clock score, while scolopidia neurons showed low ranks for 4 
aging features but high changes in expressed gene number (Fig. 5F). This observation is not 
unexpected considering that each cell type carries a unique function. Secondly, we observed a 
divergence in the contribution of individual cell types to a tissue’s aging phenotype. For example, 
in the female reproductive system, follicle cells were ranked very high (6th of 64 cell types), but 
germline cells were ranked near the bottom (53th of 64 cell types) (fig. S27A). This indicates that 
age-related decline of female fertility may be due to aging of follicle cells. Thirdly, the top ranked 
cell types include all adipose cells. This is surprising and we do not fully understand the underlying 
mechanisms. It may be linked to the fact that these cell types play multiple critical roles in different 
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physiological conditions, such as lipid storage and metabolism, immune responses, and 
interorgan communication with muscles and gut (Arrese and Soulages, 2010; Chatterjee and 
Perrimon, 2021; Zhao and Karpac, 2021). 
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Data and materials availability: 
All data are available for querying at https://flyagingatlas.org. Raw FASTQ files and processed 
h5ad files, including expression matrices and cell-type annotations, can be downloaded from 
NCBI GEO: GSE218661. Analysis codes for generating the figures can be downloaded from 
https://github.com/hongjie-lab/AFCA. FCA data were downloaded from 
https://www.flycellatlas.org/.  
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Materials and Methods 

Fly sample and lifespan 
Fly head and body samples were from F1 of two wild type fly stains: female w1118 and male Oregon 
R (OreR). Flies were maintained on standard cornmeal medium at 25 ̊C with 12-hour light–dark 
cycle. For the lifespan experiment, progenies were collected 3 days after the first fly hatched. 
Flies were allowed to mate for 3 days. Then male and female flies were separated into different 
cages (120 flies per cage) for lifespan or sample collection at 25°C. Fly food was changed every 
2 days. Dead flies were counted every 2 days. Lifespan curves were generated in Excel. 
  
Single-nucleus RNA sequencing 
Fly heads and bodies were dissected at different ages, 30d, 50d and 70d, put into 1.5ml RNAase 
free Eppendorf tube, flash-frozen using liquid nitrogen, and then stored at –80 ̊C. We put 100 
heads or 50 bodies in each tube. Single-nucleus suspensions were prepared following the 
protocol described in Fly Cell Atlas study (Li et al., 2022). Next, we collect nuclei by FACS. We 
used the SONY SH800 FACS sorter for collecting nuclei. Nuclei were stained by Hoechst-33342 
(1:1000; >5min). Since polyploidy is common for many fly tissues, we observed different 
populations of nuclei according to DNA content (Hoechst signal). In order to include all cell 
populations with different nuclear sizes, we have included all nuclear populations from the FACS. 
Nuclei were collected into a 1.5ml tube with 200ul 1x PBS with 0.5% BSA as the receiving buffer 
(RNase inhibitor added). For each 10x Genomics run, 100k–400k nuclei were collected. Nuclei 
were spun down for 10 min at 1000g at 4 ̊C, and then resuspended using 40ul or desired amount 
of 1x PBS with 0.5% BSA (RNase inhibitor added). 2ul nucleus suspension was used for counting 
the nuclei with hemocytometers to calculate the concentration. When loading to the 10x controller, 
we always target 10k nuclei for each channel. We observed that loading 1.5 folds more nuclei as 
recommended by the protocol allowed us to recover about 10k cells after sequencing. For 
example, if the concentration is 1500 nuclei per ul for one sample, we treat it as 1000 nuclei per 
ul when loading to the 10x controller.  
  
Next, we performed snRNA-seq using the 10x Genomics system with 3’ v3.1 kits with following 
settings. All PCR reactions were performed using the Biorad C1000 Touch Thermal cycler with 
96-Deep Well Reaction Module. 13 cycles were used for cDNA amplification and 16 cycles were 
used for sample index PCR. As per 10x protocol, 1:10 dilutions of amplified cDNA and final 
libraries were evaluated on a bioanalyzer. Each library was diluted to 4 nM, and equal volumes 
of 18 libraries were pooled for each NovaSeq S4 sequencing run. Pools were sequenced using 
100 cycle run kits and the Single Index configuration. Read 1, Index 1 (i7), and Read 2 are 28 bp, 
8 bp and 91 bp respectively. A PhiX control library was spiked in at 0.2 to 1% concentration. 
Libraries were sequenced on the NovaSeq 6000 Sequencing System (Illumina). 
  
For each age, we sequenced the head for 12 runs (6 for male and 6 for female) and body for 12 
runs (6 for male and 6 for female). To collect enough nuclei for 6 runs, we used 100 heads and 
50 bodies. For three ages, we sequenced 24*3 = 72 runs. We have recently published a protocol 
describing the single-nucleus RNAseq in Drosophila and all above steps have been detailed 
(McLaughlin et al., 2022).  
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Sequencing read alignment 

The raw FASTQ files were first filtered for the index-hopping reads by using the index-hopping-
filter developed by the 10x Genomics (version 1.0.1). Before mapping reads, the Drosophila 
melanogaster genome (FlyBase r6.31) was indexed with a pre-mRNA GTF, which was 
established by FCA (Li et al., 2022), using the Cell Ranger (version 4.0.0). FASTQ files removing 
the index-hopping reads were mapped to the Drosophila melanogaster genome (r6.31) using Cell 
Ranger Count (version 4.0.0) to generate the count matrix.  

AFCA annotation 

In the FCA dataset, there are 251 cell types annotated, many of which were characterized from 
dissected tissues. For cell types from the head, besides the whole head sequencing, there are 
only two dissected tissues: antennae and proboscis. So, most cell types from the aging head can 
be annotated based on the FCA whole head data. For cell types from the body, most cell type 
annotations are from tissues (only 33 annotated cell types from the FCA whole body data). To 
annotate aging body data, we need to transfer annotations from the body and individual tissues 
(e.g., gut, wing, leg, testis, ovary, fat body etc). Thus, the aging head and body data were 
annotated using slightly different strategies and we characterized them separately. For both, we 
first integrated FCA and AFCA datasets and corrected age and sex differences using Harmony 
(Korsunsky et al., 2019). Next, we characterized cell types using two different approaches: co-
clustering and supervised machine learning (ML)-based classification. Then, we validated those 
two approaches using cell type-specific markers and performed manual correction when 
necessary.  

For the head data, FCA and AFCA head cells were co-clustered and 150 principal components 
(PCs) were selected for clustering. We followed the co-cluster-based approaches utilized in FCA 
brain-head integration (Li et al., 2022) and annotations from the FCA cells were transferred to the 
clusters that contained at least 15% of cells with the same annotation. Alternatively, if more than 
15% of the annotation-specific cells were enriched in the clusters, those clusters were assigned 
to the corresponding annotations. Different Leiden resolutions were applied for the transfer and 
the one with the maximum number of transferred annotations was chosen. If annotations from 
two approaches were not consistent, cluster-dominant annotations would be assigned to the 
clusters. Besides cluster-based transfer, we also included a supervised ML method. We utilized 
the Logistic Regression classifier to transfer the FCA annotations to AFCA cells. FCA cells were 
used as the training dataset, while AFCA samples were considered as test data. By comparing to 
the annotations from these two approaches, annotations were manually confirmed by examining 
the expression of cell type-specific genes to prevent the loss of transfer due to aging. Also, 
annotations were unified and denoised in the cluster level. In total, 90 cell types were annotated, 
including 17 newly identified neuron types. 

To annotate AFCA body cells, FCA and AFCA body cells were first co-clustered using 50 PCs 
and 33 annotations from FCA body were transferred to the AFCA body cells using approaches 
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similar to the head transfer. To include annotations from different body tissues, we co-clustered 
cells from FCA body, AFCA body, and all FCA tissues to identify clusters with tissue-specific 
annotations (fig. S4). The cluster-based method enabled us to quickly identify tissue-specific 
annotations from integrated body and tissue cells. Clusters with tissue-specific annotations were 
chosen for further sub-clustering and tissue annotations were transferred similarly using cluster- 
and supervised ML-based approaches. Due to the similarity between some gut and malpighian 
tubule cell types, especially for the intestinal stem cell and renal stem cell (fig. S6C and S7), we 
combined annotations from these two tissues together for the transfer. Some cell types, like 
muscle cells, were present in multiple tissues and we considered subsetting those cells based on 
the expression of cell-type markers, instead of selecting the annotation-enriched clusters (fig. 
S5). After subsetting marker-positive cells, FCA annotations were similarly transferred. After 
transferring all tissue annotations, 72 cell types were annotated in the AFCA body. 

Gut cell type case study 

The analysis of the gut cells in the AFCA data was performed using SCANPY and scFates python 
packages (Faure et al., 2022; Wolf et al., 2018). The intestinal stem cell lineage was isolated from 
the data and includes intestinal stem cells, enteroblasts, adult differentiating enterocytes, 
enteroendocrine cells, anterior enterocytes, and posterior enterocytes. The pseudotime was 
generated by combining the young (FCA age 5 sample) and old (AFCA age 50 and 70 samples). 
To generate this plot, the partition-based graph abstraction (PAGA) function was applied to infer 
the connectivity of clusters then the ForceAtlas2 algorithm was implemented to spatially overlay 
the cells onto the connectivity plot generated by PAGA (Jacomy et al., 2014; Wolf et al., 2019). 
To compare the cell compositions of each age, the cells of different ages were plotted separately 
next to the pseudotime. The percentages of cells comprising the intestinal stem cell lineage were 
extracted from the data and then plotted on Fig 2D. 

The changes in gene expression were generated using the scFates python package (Faure et al., 
2022). Cells were isolated from each age and then run separately in the scFates pipeline. Briefly, 
scFates uses the ElPiGraph algorithm to learn the topography of the data. Then, the pseudotime 
was constructed from the graph inferred by the ElPiGraph algorithm. The genes differentially 
expressed along the trajectory were determined using a cubic spline regression model and then 
these results were compared to an unrestrained model. The Benjamini-Hochberg correction was 
then applied to adjust for multiple comparisons. A significantly altered gene along the trajectory 
between each age, Rbfox1, is shown in Fig S11. 

Fat body and indirect flight muscle staining 

To label the fat body tissue with GFP, cg-GAL4 (Bloomington Drosophila Stock Center (BDSC), 
#7011) virgins were crossed with UAS-unc84GFP (from Dr. Gilbert L. Henry) or UAS-CD8GFP 
(from Dr. Liqun Luo) males to obtain cg-GAL4>unc84GFP or cg-GAL4>CD8GFP flies. For indirect 
flight muscle labeling, Act88F-GAL4 (BDSC #38461) virgins were crossed with UAS-unc84GFP 
to obtain Act88F-GAL4>unc84GFP flies. Flies were cultured at 25°C to desired ages.  
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For fat body dissection, fly abdomen filet were prepared in 1X PBS using Vannas Spring Scissors 
(FST, 3mm Cutting Edge, 15000-00) and Dumont #55 forceps (FST, 11255-20). For indirect flight 
muscle dissection, flies in 1.5ml Eppendorf tube were snap-freezed in liquid nitrogen, placed on 
the ice rack. After the head, leg and wing were removed, the abdomen was clamped with forceps 
and thorax was cut in the sagittal section by a razor. Tissues were fixed with 4% 
paraformaldehyde for 20 min at room temperature (RT), washed with 1X PBS, blocked in 5% 
NGS blocking buffer (1XPBS, 0.3% Triton X-100, 5% NGS) for 2 h at RT, incubated with primary 
antibodies (in 5% NGS blocking buffer) overnight at 4°C, and then washed 5 times with 0.3% 
PBST (1XPBS, 0.3% Triton X-100) before incubation with secondary antibodies for 2 h at RT. 
Tissues were thoroughly rinsed in PBST, stained with DAPI(1:1000) for 15 min, washed with 
1XPBS and mounted with SlowFade™ Gold Antifade Mountant (Thermo Fisher, S36936).  

Mouse anti-LamC (1:100, Developmental Studies Hybridoma Bank (DSHB), LC28.26), chicken 
anti-GFP (1:1000, Aves Labs), rabbit anti-pH3 (1:1000, Cell Signaling Technology, #9701), rabbit 
anti-cleaved-Caspase3 (1:100, Cell Signaling Technology, #9661) were used as primary 
antibodies. For secondary antibodies, we used Cy™3 AffiniPure Donkey Anti-Mouse IgG (H+L) 
(1:250, Jackson ImmunoResearch, AB_2340813), Alexa Fluor® 488 AffiniPure Donkey Anti-
Chicken IgY (IgG) (H+L) (1:250, Jackson ImmunoResearch, AB_2340375), Alexa Fluor™ 647 
Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody (1:250, Invitrogen, 
A31573). Alexa Fluor 647 Phalloidin (1:250, Invitrogen, A22287) was used to stain F-actin in 
muscle. 

Images were obtained with Leica STELLARIS 5 confocal microscope. Images were obtained as 
Z series with the same interval. Z series images were merged by ImageJ (Image-Stacks-Z 
projection-Max Intensity), and then the mean fluorescence intensity was measured (Analyze-
Measure-Mean gray value) or nucleus number was counted by Point Tool. Quantification graphs 
are generated by GraphPad Prism. P-values from unpaired t-test. Error bar, standard deviation 
(SD). 

DEG analysis 

To identify genes that are differentially expressed in the aged population, we applied the Wilcoxon 
Rank Sum test (rank_genes_groups() in SCANPY) to compare the gene expression between the 
aged (30d, 50d, and 70d) and the young population (5d). Genes with FDR lower than 0.05 would 
be considered to be differentially expressed.  

Change of cell composition 

Cell numbers of each cell type were counted and then separated by age. To get the ratio of one 
cell type from one age, the cell numbers of a specific cell type and age were further divided by 
the total cell number of the corresponding age. The cell-type ratios from the aged population (30d, 
50d, 70d) were further divided by ratios from the young population (5d) to get the relative ratios 
in log2 scale.  

GO analysis 
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Age-specific DEGs, including up- or down-regulated genes, from each cell type were applied for 
the Gene Ontology (GO) analysis using GOATOOLS (version 1.2.3) (Klopfenstein et al., 2018). 
The gene association file (version FB2022_04) was downloaded from the FlyBase. Redundant 
GO terms were removed by REVIGO (Supek et al., 2011). GO terms from Biological Process 
(BP) were mainly used for our analysis (Fig. 3E, 3F, and fig. S16). GOs restricted within 5 cell 
types were considered as cell-type specific GOs (Fig. 3E, 3F, and fig. S19A). 

Aging clock analysis  

For aging clock analysis, we focused on 64 head and body cell types that have at least 200 cells 
at each time point. For each cell type satisfying the condition, we then built aging clock models – 
regression models that predict age from the transcriptome. In particular, for each cell type we 
trained the elastic net model (Zou & Hastie 2005) by using cells’ transcriptome as explanatory 
(independent) variables and age as the response (dependent) variable. We randomly split the 
dataset into a train and test dataset where we used 70% of cells to train the model, and 30% of 
cells to validate the model. We compared the predictions to the true age and measured 
performance of the model as R2, i.e., proportion of the variance for a dependent variable that's 
explained by an independent variable or variables. We repeated the analysis over five random 
seeds, resulting in different train and test data splits. To find genes that correlate with age, we 
first filtered all genes with zero coefficient in the regression model. For the remaining genes, we 
calculated Pearson correlation between its value and age and retained those genes for which the 
correlation coefficient was higher than 0.3. This analysis resulted in 480 genes. We repeated the 
same analysis for the Mouse Aging Cell Atlas (Tabula Muris Senis) (Tabula Muris Consortium, 
2020). 

To compare models between two consecutive stages, we trained three logistic regression models 
for each cell type to distinguish between (i) 5 days and 30 days old fly, (2) 30 days and 50 days 
old fly, and (iii) 50 days and 70 days old fly. We split the data into train and test dataset by using 
70% data for training the model and 30% data for evaluation by preserving the percentage of 
samples for each class (stratified sampling). We evaluated classification performance using 
accuracy.  

Cell-identity analysis 

Change of cell-identity was based on the expression changes of marker genes between different 
ages. Cell-type markers from young (5d) and old animals (50d) were identified separately using 
the Wilcoxon Rank Sum test (rank_genes_groups() in SCANPY). Top 200 genes that are 
differentially expressed between cell types were defined as marker genes for each cell type. 
Expression of marker genes were further compared between young and old population using 
Wilcoxon Rank Sum test to identify differentially expressed markers (FDR < 0.05). Young marker 
genes with significant reduction of expression would be considered to decrease the cell-type 
identity. On the other hand, old marker genes with significant increase of expression were also 
considered to decrease the identity. Together, we used the average of these two ratios to indicate 
the change of cell identity.  
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AFCA website 

The AFCA Website was developed with the Shiny package (v1.6.0) in R language (v4.0.5). We 
included three major datasets: Head dataset, Body dataset, and Head and Body dataset, where 
they contain the snRNA-Seq analytical results from head tissues, body tissues, and combined 
respectively. For the Cell type and Gene Expression tabs, the data processing and visualization 
were performed with the Tidyverse (v1.3.0) and ggplot2 (v3.3.3) packages in R. For the 
customized analysis tab, its features and functions were powered by the ShinyCell (v2.1.0) 
package.  

Rank sum of aging features 

We measured the absolute differences of each aging feature between the young (5d) and old 
(50d) population and ranked the cell-type differences. High ranks represented high aging 
differences, while low ranks indicated low differences between young and old population. To have 
a better estimation, we focused on cell types with more than 200 nuclei from each age. 
Correlations of different aging features were compared using the Spearman’s correlation. To 
know which cell types showing high aging differences supported by different features, we summed 
the ranks of five different aging features and ranked the sums. High rank sums of different aging 
features represented high aging differences, and vice versa. 

Analysis of alternative polyadenylation (APA) analysis 
Our overall analysis strategy was based on our recent scAPA study of the FCA dataset (Lee et 
al., 2022). We used LABRATsc (https://github.com/TaliaferroLab/LABRAT) to quantify APA from 
the scRNA-seq data with current FlyBase Drosophila melanogaster gene annotation (version 
r6.45). Two modes were used for either single-cell level (cellbycell) or cell-type specific 
(subsampleClusters) quantification using ‘--mode’ parameter. We used read coverage thresholds 
of at least 3 or 100 counts per gene for single-cell level or cell-type specific quantification 
respectively to minimize noise and false positives. LABRAT calculates ψ values reflecting 3' 
isoform usage, with “0” indicating exclusive usage of the most proximal pA site, while "1" indicates 
exclusive usage of the most distal pA site. Ψ values for each annotated cell-type, and for individual 
cells, were used for downstream analysis. 
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Fig. S1. General pipeline of snRNA-seq analysis and data availability. 
(A) Data processing steps, including preprocessing, normalization, dimensionality reduction, 
clustering, and annotation and data sharing. (B) Data available from different sources, including 
NCBI, GitHub, CELLxGENE, and AFCA website. 
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Fig. S2. AFCA web portal for surveying the age-related changes. 
AFCA web portal provides cell type-based, gene-based, and customized analysis. 
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Fig. S3. General quality of snRNA-seq results. 
UMI number, expressed gene number, and mitochondria transcript ratio from the AFCA data. 
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Fig. S4. Illustration of transferring the FCA annotation to the AFCA cells. 
Flowchart of transferring the annotations from FCA to AFCA. FCA and AFCA data are first co-
coustered. Co-clustered data can be further extracted for tissue-specific cell types, e.g. gut- and 
malpighian tubule-specific cell types. After subclustering targeted cells, FCA annotations are 
transferred to AFCA cells using cluster-based or supervised machine-learning approaches. 
Results from two transfer methods are compared and ambiguous transfers are further checked 
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for the expression of the corresponding marker genes. After confirming the expression of the 
marker genes, annotations are corrected and finalized.  
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Fig. S5. Illustration of transferring the FCA annotation to the AFCA muscle cells. 
Flowchart of transferring the muscle-type annotations from FCA to AFCA. Some cell types, like 
muscle cells, can be found in multiple tissues and we consider first extracting those cells based 
on the expression of general markers of muscle cells. After subclustering the corresponding cells, 
all remaining analyses are similar to approaches used in Fig. S4. 
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Fig. S6. Ambiguous annotations from the aging samples. 
(A, B) Marker genes of the indirect flight muscle. (A) Loss of marker genes in the indirect flight 
muscle. (B) Markers specific for the indirect flight muscle. (C) Overlapped marker genes from 
renal stem cells and intestinal stem cells. 
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Fig. S7. Illustration of manually annotating ISCs, EBs, and renal stem cells. 
Flowchart of manual annotation of stem cell population. ISCs, EBs, and differentiating enterocyte 
cells are selected from the gut and malpighian tubule dataset shown in Fig. S3. Marker genes 
enriched in each cluster are identified and confirmed. 
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Fig. S8. Detailed cell types annotated in the head sample shown by tSNE. 
90 head cell types are shown in the tSNE plot. 
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Fig. S9. Detailed cell types annotated in the body sample shown by tSNE. 
72 body cell types are shown in the tSNE plot. 
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Fig. S10. Marker genes identified from the newly identified neuron clusters. 
Markers of 17 newly identified neuron types are shown. Expression of general neuronal markers, 
Syt1, and para, indicates the neuron specificity. Expression of VAChT, Gad1 and VGlut indicates 
they are cholinergic, GABAergic, or Glutamatergic neurons. 
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Fig. S11 Pseudotime inference and cellular composition of ISC and ISC-differentiated cell 
types. 
(A) Illustration of ISC differentiation process. (B) Cell types shown in different colors. (C) Changes 
of cellular composition in the ISC lineage. (D) Age-specific profile of different cell types. (E) Rbfox1 
gene shows different patterns along the young and old ISC lineage. ISC, intestinal stem cell; EB, 
enteroblast; EC, enterocyte; EE, enteroendocrine cell; a. EC, anterior EC; p. EC, posterior EC; 
diff. EC, differentiating EC.  
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Fig. S12 Changes of cell-type composition during aging. 
(A) Changes of cellular composition by comparing the nucleus ratio of the old sample (30d, 50d, 
and 70d) to the ratio of the young one (5d). (B) Changes of cellular composition by comparing the 
nucleus ratio between two consecutive ages. (C) Cell types with more than 2-fold changes of 
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cellular composition by comparing the old samples to the young ones. (D) Cell types with more 
than 2-fold changes of cellular composition by comparing the sample to the previous age. 
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Fig. S13. Examples of dividing nuclei without the mitosis marker. 
Dividing nuclei from flies with different ages showing the absence of the mitosis marker (pH3). 
Fat body nuclei are collected from different ages, including 5-7d, 25-27d, and 50d. Dividing nuclei 
are stained by DAPI and LamC. The fat body membranes are labeled by cg-GAL4 > UAS-
CD8GFP.  
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Fig. S14 Apoptosis signals form the aged indirect flight muscle. 
Examples of indirect flight muscle stained by the apoptosis marker in the young and old flies. The 
indirect flight muscles are stained for the apoptosis events using cleaved-Caspase3 antibody. 
Nuclei are stained by DAPI. Actin filaments in the muscle cells are labeled by Phalloidin. 
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Fig. S15 DEG numbers detected in each cell type. 
(A) DEG numbers from different cell types. The aged groups (30d, 50d, and 70d) are compared 
with the young population (5d). (B) Two consecutive ages are compared to identify DEGs in each 
cell type.  
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Fig. S16 Detailed ratio of DEG number across different age periods. 
(A) The ratios of DEG numbers in different cell types. Each age period is shown in a different 
color. (B) Number of differentially expressed genes detected in the different age period. 
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Fig. S17 Sex-specific expression of genes. 
(A) Expression of female- and male-biased genes from the fat body cells during aging. (B) 
Expression of Yp1 and roX1 in body cells shown by tSNE. 
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Fig. S18 Sex-biased genes from each age. 
(A) The number of sex-specific genes from each age. (B) Sex-biased ratios from different ages. 
(C) Illustration of sex-biased ratios from several cell types. 
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Fig. S19 GO frequency and the most significant GOs from the up- and down-regulated 
genes. 
(A-B) Up- and down-regulated DEGs are identified by comparing 50d flies to 5d flies. (A) GO 
frequencies from up- and down-regulated genes. GO frequency indicates how many cell types 
have the corresponding GO. The red line indicates five cell types with the corresponding GO. ((B) 
GOs with the lowest FDR from the up-regulated genes. (C) GOs with the lowest FDR from the 
down-regulated genes. 
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Fig. S20 Predictive performance of aging clocks. 
Predictive performances of aging clocks from each cell type. Performances of head and body cell 
types are shown separately.  
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Fig. S21 Aging clock profiles. 
(A) The cell numbers from each cell type are not correlated to the predictive performance. (B) 
Examples of two cell types with good prediction of true age. (C) Expression of aging clock genes 
in two different cell types. 
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Fig. S22 Aging clock genes present in both fly and mouse. 
1-1 orthologs of 33 aging clock genes conserved between fly and mouse. Number of cell types 
shown in each species indicate that the aging clock genes are detected as aging clock genes in 
the corresponding number of cell types. 
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Fig. S23 Examples of cross-species comparison of aging clock genes. 
Expression of two orthologous aging clock genes.  
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Fig. S24 Variance of UMI and expressed gene numbers during aging. 
(A) Numbers of expressed genes and UMIs per cell are decreased in the aged CNS neurons (30d 
and 50d). (B) Log2 ratio of expressed gene or UMI number per cell during aging. (C) Changes of 
expressed gene number in pericerebral adult fat mass and adult fat body from the body. (D) 
Sequencing saturation of different batches of samples. 
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Fig. S25 Changes of cell-type identity during aging. 
Cell types ranked by the decline of cell-type identity during aging. Decrease of young markers 
and increase of old markers are shown separately in each cell type. 
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Fig. S26 Marker genes that affect cell-type identities during aging. 
Examples of marker genes that caused the decline of cell-type identities. 
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Fig. S27 Rank sums of different aging features. 
(A) Cell types ranked by the sum of different aging feature scores. (B) Clustering of rank sum 
scores across different cell types.  
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Fig. S28 Comparisons between the AFCA and the Drosophila cell landscape (DCL) 
datasets. 
(A) A comparison of the number of annotated cell types between our AFCA and DCL (Wang et 
al., 2022). The AFCA dataset annotates significantly more cell types than DCL. For example, the 
AFCA annotates a higher number of cell types in glial, CNS neuronal, and sensory neuronal cells 
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compared to the DCL. (B) 38.9% of the DCL cells belong to the follicle cells of the ovary, indicating 
a sampling bias of this cell type. (C) The neuronal lineage composition of the DCL dataset. Note 
that glial cells are only detected in 2 out of 7 ages, and GABAergic neurons are not detected in 
36d but account for 90% at 41d. (D) The gut lineage composition of the DCL dataset. Note that 
no intestinal stem cells are annotated. B-D plots are from the DCL website portal, 
http://bis.zju.edu.cn/DCL/. 
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Fig. S29 Comparison of alternative polyadenylation (APA) scores across different ages. 
(A-B) The circular heatmaps summarize APA trends from the annotated neuronal extended genes 
across different time points in females (A) and males (B). We use the LABRATsc package to 
calculate ψ and average value for 391 neuronal extended genes, which are plotted in each of the 
neuronal types from the AFCA head data. (C) UMAP of different neuronal types designated by 
the AFCA. Average 3' isoform usage of 391 neural extended genes is plotted in individual cells 
by different aging time-points. Both analyses show that neuronal extended 3' isoforms are 
progressively depleted during aging. This phenotype is stronger in females at 70d. 
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Movies S1-S3. 3D reconstructions of two attached nuclei in the same fat body cell. 
Attached nuclei are stained by DAPI and LamC. The membranes of fat body cells are labeled by 
cg-GAL4 > UAS-CD8GFP. 
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